These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
353 related articles for article (PubMed ID: 22267807)
1. An engineered microbial platform for direct biofuel production from brown macroalgae. Wargacki AJ; Leonard E; Win MN; Regitsky DD; Santos CN; Kim PB; Cooper SR; Raisner RM; Herman A; Sivitz AB; Lakshmanaswamy A; Kashiyama Y; Baker D; Yoshikuni Y Science; 2012 Jan; 335(6066):308-13. PubMed ID: 22267807 [TBL] [Abstract][Full Text] [Related]
2. Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform. Enquist-Newman M; Faust AM; Bravo DD; Santos CN; Raisner RM; Hanel A; Sarvabhowman P; Le C; Regitsky DD; Cooper SR; Peereboom L; Clark A; Martinez Y; Goldsmith J; Cho MY; Donohoue PD; Luo L; Lamberson B; Tamrakar P; Kim EJ; Villari JL; Gill A; Tripathi SA; Karamchedu P; Paredes CJ; Rajgarhia V; Kotlar HK; Bailey RB; Miller DJ; Ohler NL; Swimmer C; Yoshikuni Y Nature; 2014 Jan; 505(7482):239-43. PubMed ID: 24291791 [TBL] [Abstract][Full Text] [Related]
3. Biofuels. Engineered superbugs boost hopes of turning seaweed into fuel. Stokstad E Science; 2012 Jan; 335(6066):273. PubMed ID: 22267782 [No Abstract] [Full Text] [Related]
4. Construction of bioengineered yeast platform for direct bioethanol production from alginate and mannitol. Takagi T; Sasaki Y; Motone K; Shibata T; Tanaka R; Miyake H; Mori T; Kuroda K; Ueda M Appl Microbiol Biotechnol; 2017 Sep; 101(17):6627-6636. PubMed ID: 28741083 [TBL] [Abstract][Full Text] [Related]
5. Direct bioethanol production from brown macroalgae by co-culture of two engineered Saccharomyces cerevisiae strains. Sasaki Y; Takagi T; Motone K; Shibata T; Kuroda K; Ueda M Biosci Biotechnol Biochem; 2018 Aug; 82(8):1459-1462. PubMed ID: 29708475 [TBL] [Abstract][Full Text] [Related]
6. Platform construction of molecular breeding for utilization of brown macroalgae. Takagi T; Kuroda K; Ueda M J Biosci Bioeng; 2018 Jan; 125(1):1-7. PubMed ID: 28877851 [TBL] [Abstract][Full Text] [Related]
7. Vibrio sp. dhg as a platform for the biorefinery of brown macroalgae. Lim HG; Kwak DH; Park S; Woo S; Yang JS; Kang CW; Kim B; Noh MH; Seo SW; Jung GY Nat Commun; 2019 Jun; 10(1):2486. PubMed ID: 31171782 [TBL] [Abstract][Full Text] [Related]
8. Efficacy of acidic pretreatment for the saccharification and fermentation of alginate from brown macroalgae. Wang D; Yun EJ; Kim S; Kim do H; Seo N; An HJ; Kim JH; Cheong NY; Kim KH Bioprocess Biosyst Eng; 2016 Jun; 39(6):959-66. PubMed ID: 26923145 [TBL] [Abstract][Full Text] [Related]
9. Characterization of Nizimuddinia zanardini macroalgae biomass composition and its potential for biofuel production. Yazdani P; Zamani A; Karimi K; Taherzadeh MJ Bioresour Technol; 2015 Jan; 176():196-202. PubMed ID: 25461003 [TBL] [Abstract][Full Text] [Related]
11. Maximizing the utilization of Laminaria japonica as biomass via improvement of alginate lyase activity in a two-phase fermentation system. Oh Y; Xu X; Kim JY; Park JM Biotechnol J; 2015 Aug; 10(8):1281-8. PubMed ID: 26098412 [TBL] [Abstract][Full Text] [Related]
12. Direct Itaconate Production from Brown Macroalgae Using Engineered Moon JH; Woo S; Shin HJ; Lee HK; Jung GY; Lim HG J Agric Food Chem; 2024 Jul; 72(30):16860-16866. PubMed ID: 39031782 [TBL] [Abstract][Full Text] [Related]
13. Optimal production of 4-deoxy-L-erythro-5-hexoseulose uronic acid from alginate for brown macro algae saccharification by combining endo- and exo-type alginate lyases. Wang DM; Kim HT; Yun EJ; Kim DH; Park YC; Woo HC; Kim KH Bioprocess Biosyst Eng; 2014 Oct; 37(10):2105-11. PubMed ID: 24794171 [TBL] [Abstract][Full Text] [Related]
14. Cloning and characterization of the first polysaccharide lyase family 6 oligoalginate lyase from marine Shewanella sp. Kz7. Li S; Wang L; Han F; Gong Q; Yu W J Biochem; 2016 Jan; 159(1):77-86. PubMed ID: 26232404 [TBL] [Abstract][Full Text] [Related]
15. Saccharification of Brown Macroalgae Using an Arsenal of Recombinant Alginate Lyases: Potential Application in the Biorefinery Process. Gimpel JA; Ravanal MC; Salazar O; Lienqueo ME J Microbiol Biotechnol; 2018 Oct; 28(10):1671-1682. PubMed ID: 30178648 [TBL] [Abstract][Full Text] [Related]
16. Engineered yeast whole-cell biocatalyst for direct degradation of alginate from macroalgae and production of non-commercialized useful monosaccharide from alginate. Takagi T; Yokoi T; Shibata T; Morisaka H; Kuroda K; Ueda M Appl Microbiol Biotechnol; 2016 Feb; 100(4):1723-1732. PubMed ID: 26490549 [TBL] [Abstract][Full Text] [Related]
17. Comparative biochemical characterization of three exolytic oligoalginate lyases from Vibrio splendidus reveals complementary substrate scope, temperature, and pH adaptations. Jagtap SS; Hehemann JH; Polz MF; Lee JK; Zhao H Appl Environ Microbiol; 2014 Jul; 80(14):4207-14. PubMed ID: 24795372 [TBL] [Abstract][Full Text] [Related]
18. Structure of a PL17 family alginate lyase demonstrates functional similarities among exotype depolymerases. Park D; Jagtap S; Nair SK J Biol Chem; 2014 Mar; 289(12):8645-55. PubMed ID: 24478312 [TBL] [Abstract][Full Text] [Related]
19. Regulation of pH attenuates toxicity of a byproduct produced by an ethanologenic strain of Sphingomonas sp. A1 during ethanol fermentation from alginate. Fujii M; Yoshida S; Murata K; Kawai S Bioengineered; 2014; 5(1):38-44. PubMed ID: 24445222 [TBL] [Abstract][Full Text] [Related]
20. Implementation of stable and complex biological systems through recombinase-assisted genome engineering. Santos CN; Regitsky DD; Yoshikuni Y Nat Commun; 2013; 4():2503. PubMed ID: 24056574 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]