These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 22267808)

  • 21. Infrared Spectroscopy and Catalysis Research: Infrared spectra of adsorbed molecules provide important information in the study of catalysis.
    Eischens RP
    Science; 1964 Oct; 146(3643):486-93. PubMed ID: 17806797
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In situ ATR-IR spectroscopic and reaction kinetics studies of water-gas shift and methanol reforming on Pt/Al2O3 catalysts in vapor and liquid phases.
    He R; Davda RR; Dumesic JA
    J Phys Chem B; 2005 Feb; 109(7):2810-20. PubMed ID: 16851292
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New method for analysis of nanoparticle geometry in supported fcc metal catalysts with scanning transmission electron microscopy.
    Carlsson A; Puig-Molina A; Janssens TV
    J Phys Chem B; 2006 Mar; 110(11):5286-93. PubMed ID: 16539459
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting.
    Roeffaers MB; Sels BF; Uji-I H; De Schryver FC; Jacobs PA; De Vos DE; Hofkens J
    Nature; 2006 Feb; 439(7076):572-5. PubMed ID: 16452976
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure of ethene adsorption sites on supported metal catalysts from in situ XANES Analysis.
    Bus E; Ramaker DE; van Bokhoven JA
    J Am Chem Soc; 2007 Jul; 129(26):8094-102. PubMed ID: 17564442
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Energetic mapping of Ni catalysts by detailed kinetic modeling.
    Bjørgum E; Chen D; Bakken MG; Christensen KO; Holmen A; Lytken O; Chorkendorff I
    J Phys Chem B; 2005 Feb; 109(6):2360-70. PubMed ID: 16851230
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of silica supported AuCu nanoparticle catalysts and the effects of pretreatment conditions for the CO oxidation reaction.
    Bauer JC; Mullins D; Li M; Wu Z; Payzant EA; Overbury SH; Dai S
    Phys Chem Chem Phys; 2011 Feb; 13(7):2571-81. PubMed ID: 21246124
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Size-dependent dynamic structures of supported gold nanoparticles in CO oxidation reaction condition.
    He Y; Liu JC; Luo L; Wang YG; Zhu J; Du Y; Li J; Mao SX; Wang C
    Proc Natl Acad Sci U S A; 2018 Jul; 115(30):7700-7705. PubMed ID: 29987052
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxidation of formic acid on the Pt(111) surface in the gas phase.
    Gao W; Keith JA; Anton J; Jacob T
    Dalton Trans; 2010 Sep; 39(36):8450-6. PubMed ID: 20714626
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct imaging of Pt single atoms adsorbed on TiO2 (110) surfaces.
    Chang TY; Tanaka Y; Ishikawa R; Toyoura K; Matsunaga K; Ikuhara Y; Shibata N
    Nano Lett; 2014 Jan; 14(1):134-8. PubMed ID: 24351061
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CO adsorption on CoMo and NiMo sulfide catalysts: a combined IR and DFT study.
    Travert A; Dujardin C; Maugé F; Veilly E; Cristol S; Paul JF; Payen E
    J Phys Chem B; 2006 Jan; 110(3):1261-70. PubMed ID: 16471673
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visualizing Under-Coordinated Surface Atoms on 3D Nanoporous Gold Catalysts.
    Liu P; Guan P; Hirata A; Zhang L; Chen L; Wen Y; Ding Y; Fujita T; Erlebacher J; Chen M
    Adv Mater; 2016 Mar; 28(9):1753-9. PubMed ID: 26676880
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic Atom Clusters on AuCu Nanoparticle Surface during CO Oxidation.
    Luo L; Chen S; Xu Q; He Y; Dong Z; Zhang L; Zhu J; Du Y; Yang B; Wang C
    J Am Chem Soc; 2020 Feb; 142(8):4022-4027. PubMed ID: 32017551
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metallic corner atoms in gold clusters supported on rutile are the dominant active site during water-gas shift catalysis.
    Williams WD; Shekhar M; Lee WS; Kispersky V; Delgass WN; Ribeiro FH; Kim SM; Stach EA; Miller JT; Allard LF
    J Am Chem Soc; 2010 Oct; 132(40):14018-20. PubMed ID: 20853899
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of gas environment and heating on atomic structures of platinum nanoparticle catalysts for proton-exchange membrane fuel cells.
    Yoshida K; Zhang X; Shimada Y; Nagai Y; Hiroyama T; Tanaka N; Lari L; Ward MR; Boyes ED; Gai PL
    Nanotechnology; 2019 Apr; 30(17):175701. PubMed ID: 30641503
    [TBL] [Abstract][Full Text] [Related]  

  • 36. First-principle calculations on CO oxidation catalyzed by a gold nanoparticle.
    Chen HT; Chang JG; Ju SP; Chen HL
    J Comput Chem; 2010 Jan; 31(2):258-65. PubMed ID: 19434739
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Environmental transmission electron microscopy for catalyst materials using a spherical aberration corrector.
    Takeda S; Kuwauchi Y; Yoshida H
    Ultramicroscopy; 2015 Apr; 151():178-190. PubMed ID: 25498142
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evolution of the surface science of catalysis from single crystals to metal nanoparticles under pressure.
    Somorjai GA; Park JY
    J Chem Phys; 2008 May; 128(18):182504. PubMed ID: 18532789
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coupling of carbon monoxide molecules over oxygen-defected UO2(111) single crystal and thin film surfaces.
    Senanayake SD; Waterhouse GI; Idriss H; Madey TE
    Langmuir; 2005 Nov; 21(24):11141-5. PubMed ID: 16285783
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DFT and in situ EXAFS investigation of gold/ceria-zirconia low-temperature water gas shift catalysts: identification of the nature of the active form of gold.
    Tibiletti D; Fonseca AA; Burch R; Chen Y; Fisher JM; Goguet A; Hardacre C; Hu P; Thompsett D
    J Phys Chem B; 2005 Dec; 109(47):22553-9. PubMed ID: 16853937
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.