BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 22268114)

  • 1. Impairment of neurovascular coupling in type 1 diabetes mellitus in rats is linked to PKC modulation of BK(Ca) and Kir channels.
    Vetri F; Xu H; Paisansathan C; Pelligrino DA
    Am J Physiol Heart Circ Physiol; 2012 Mar; 302(6):H1274-84. PubMed ID: 22268114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impairment of neurovascular coupling in Type 1 Diabetes Mellitus in rats is prevented by pancreatic islet transplantation and reversed by a semi-selective PKC inhibitor.
    Vetri F; Qi M; Xu H; Oberholzer J; Paisansathan C
    Brain Res; 2017 Jan; 1655():48-54. PubMed ID: 27865779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions between adenosine and K+ channel-related pathways in the coupling of somatosensory activation and pial arteriolar dilation.
    Paisansathan C; Xu H; Vetri F; Hernandez M; Pelligrino DA
    Am J Physiol Heart Circ Physiol; 2010 Dec; 299(6):H2009-17. PubMed ID: 20889844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo properties of potassium channels in cerebral blood vessels during diabetes mellitus.
    Mayhan WG; Mayhan JF; Sun H; Patel KP
    Microcirculation; 2004; 11(7):605-13. PubMed ID: 15513870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex modulation of the expression of PKC isoforms in the rat brain during chronic type 1 diabetes mellitus.
    Vetri F; Chavez R; Xu HL; Paisansathan C; Pelligrino DA
    Brain Res; 2013 Jan; 1490():202-9. PubMed ID: 23103504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vasopressin-induced protein kinase C-dependent superoxide generation contributes to atp-sensitive potassium channel but not calcium-sensitive potassium channel function impairment after brain injury.
    Armstead WM
    Stroke; 2001 Jun; 32(6):1408-14. PubMed ID: 11387506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitory effects of protein kinase C on inwardly rectifying K+- and ATP-sensitive K+ channel-mediated responses of the basilar artery.
    Chrissobolis S; Sobey CG
    Stroke; 2002 Jun; 33(6):1692-7. PubMed ID: 12053013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein kinase C suppresses receptor-mediated pial arteriolar relaxation in the diabetic rat.
    Pelligrino DA; Koenig HM; Wang Q; Albrecht RF
    Neuroreport; 1994 Jan; 5(4):417-20. PubMed ID: 8003665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of NAD(P)H oxidase alleviates impaired NOS-dependent responses of pial arterioles in type 1 diabetes mellitus.
    Mayhan WG; Arrick DM; Sharpe GM; Patel KP; Sun H
    Microcirculation; 2006; 13(7):567-75. PubMed ID: 16990215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Responses of cerebral arterioles in diabetic rats to activation of ATP-sensitive potassium channels.
    Mayhan WG; Faraci FM
    Am J Physiol; 1993 Jul; 265(1 Pt 2):H152-7. PubMed ID: 8342628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acidosis dilates brain parenchymal arterioles by conversion of calcium waves to sparks to activate BK channels.
    Dabertrand F; Nelson MT; Brayden JE
    Circ Res; 2012 Jan; 110(2):285-94. PubMed ID: 22095728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vasodilation of retinal arterioles induced by activation of BKCa channels is attenuated in diabetic rats.
    Mori A; Suzuki S; Sakamoto K; Nakahara T; Ishii K
    Eur J Pharmacol; 2011 Nov; 669(1-3):94-9. PubMed ID: 21871885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PKC activates BKCa channels in rat pulmonary arterial smooth muscle via cGMP-dependent protein kinase.
    Barman SA; Zhu S; White RE
    Am J Physiol Lung Cell Mol Physiol; 2004 Jun; 286(6):L1275-81. PubMed ID: 14966080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulus duration-dependent contribution of k(ca) channel activation and cAMP to hypoxic cerebrovasodilation.
    Ben-Haim G; Armstead WM
    Brain Res; 2000 Jan; 853(2):330-7. PubMed ID: 10640631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen peroxide acts as an EDHF in the piglet pial vasculature in response to bradykinin.
    Lacza Z; Puskar M; Kis B; Perciaccante JV; Miller AW; Busija DW
    Am J Physiol Heart Circ Physiol; 2002 Jul; 283(1):H406-11. PubMed ID: 12063315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of coronary arterial BK channels by caveolae-mediated angiotensin II signaling in diabetes mellitus.
    Lu T; Zhang DM; Wang XL; He T; Wang RX; Chai Q; Katusic ZS; Lee HC
    Circ Res; 2010 Apr; 106(6):1164-73. PubMed ID: 20167931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local potassium signaling couples neuronal activity to vasodilation in the brain.
    Filosa JA; Bonev AD; Straub SV; Meredith AL; Wilkerson MK; Aldrich RW; Nelson MT
    Nat Neurosci; 2006 Nov; 9(11):1397-1403. PubMed ID: 17013381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium-dependent and ATP-sensitive potassium channels and the 'permissive' function of cyclic GMP in hypercapnia-induced pial arteriolar relaxation.
    Wang Q; Bryan RM; Pelligrino DA
    Brain Res; 1998 May; 793(1-2):187-96. PubMed ID: 9630623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein kinase C modulation of recombinant ATP-sensitive K(+) channels composed of Kir6.1 and/or Kir6.2 expressed with SUR2B.
    Thorneloe KS; Maruyama Y; Malcolm AT; Light PE; Walsh MP; Cole WC
    J Physiol; 2002 May; 541(Pt 1):65-80. PubMed ID: 12015420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Miconazole represses CO(2)-induced pial arteriolar dilation only under selected circumstances.
    Pelligrino DA; Santizo RA; Wang Q
    Am J Physiol; 1999 Oct; 277(4):H1484-90. PubMed ID: 10516186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.