BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 22268114)

  • 21. Tetrahydrobiopterin rescues impaired responses of cerebral resistance arterioles during type 1 diabetes.
    Mayhan WG; Arrick DM
    Diab Vasc Dis Res; 2017 Jan; 14(1):33-39. PubMed ID: 27941054
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of activation of calcium-sensitive K+ channels in NO- and hypoxia-induced pial artery vasodilation.
    Armstead WM
    Am J Physiol; 1997 Apr; 272(4 Pt 2):H1785-90. PubMed ID: 9139963
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activation of protein kinase C inhibits calcium-activated potassium channels in rat pituitary tumour cells.
    Shipston MJ; Armstrong DL
    J Physiol; 1996 Jun; 493 ( Pt 3)(Pt 3):665-72. PubMed ID: 8799890
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alterations in basal protein kinase C activity modulate renal afferent arteriolar myogenic reactivity.
    Kirton CA; Loutzenhiser R
    Am J Physiol; 1998 Aug; 275(2):H467-75. PubMed ID: 9683434
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Role of HMGB1 in Pial Arteriole Dilating Reactivity following Subarachnoid Hemorrhage in Rats.
    Xu H; Changyaleket B; Valyi-Nagy T; Dull RO; Pelligrino DA; Schwartz DE; Chong ZZ
    J Vasc Res; 2016; 53(5-6):349-357. PubMed ID: 27997923
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Potentiation of glutamatergic synaptic transmission by protein kinase C-mediated sensitization of TRPV1 at the first sensory synapse.
    Sikand P; Premkumar LS
    J Physiol; 2007 Jun; 581(Pt 2):631-47. PubMed ID: 17363391
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrophysiological and pharmacological characterization of the K(ATP) channel involved in the K+-current responses to FSH and adenosine in the follicular cells of Xenopus oocyte.
    Fujita R; Kimura S; Kawasaki S; Watanabe S; Watanabe N; Hirano H; Matsumoto M; Sasaki K
    J Physiol Sci; 2007 Feb; 57(1):51-61. PubMed ID: 17239259
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular mechanisms of diabetic coronary dysfunction due to large conductance Ca2⁺-activated K⁺ channel impairment.
    Wang RX; Shi HF; Chai Q; Wu Y; Sun W; Ji Y; Yao Y; Li KL; Zhang CY; Zheng J; Guo SX; Li XR; Lu T
    Chin Med J (Engl); 2012 Jul; 125(14):2548-55. PubMed ID: 22882938
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tempol prevents altered K(+) channel regulation of afferent arteriolar tone in diabetic rat kidney.
    Troncoso Brindeiro CM; Lane PH; Carmines PK
    Hypertension; 2012 Mar; 59(3):657-64. PubMed ID: 22252401
    [TBL] [Abstract][Full Text] [Related]  

  • 30. LY290181, an inhibitor of diabetes-induced vascular dysfunction, blocks protein kinase C-stimulated transcriptional activation through inhibition of transcription factor binding to a phorbol response element.
    Birch KA; Heath WF; Hermeling RN; Johnston CM; Stramm L; Dell C; Smith C; Williamson JR; Reifel-Miller A
    Diabetes; 1996 May; 45(5):642-50. PubMed ID: 8621017
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein kinase C inhibition of cloned inward rectifier (HRK1/KIR2.3) K+ channels expressed in Xenopus oocytes.
    Henry P; Pearson WL; Nichols CG
    J Physiol; 1996 Sep; 495 ( Pt 3)(Pt 3):681-8. PubMed ID: 8887775
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Superoxide generation links protein kinase C activation to impaired ATP-sensitive K+ channel function after brain injury.
    Armstead WM
    Stroke; 1999 Jan; 30(1):153-9. PubMed ID: 9880404
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanoregulation of BK channel activity in the mammalian cortical collecting duct: role of protein kinases A and C.
    Liu W; Wei Y; Sun P; Wang WH; Kleyman TR; Satlin LM
    Am J Physiol Renal Physiol; 2009 Oct; 297(4):F904-15. PubMed ID: 19656909
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of Ca(2+)-activated K(+) channels on rat renal arteriolar responses to depolarizing agonists.
    Fallet RW; Bast JP; Fujiwara K; Ishii N; Sansom SC; Carmines PK
    Am J Physiol Renal Physiol; 2001 Apr; 280(4):F583-91. PubMed ID: 11249849
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of protein kinase Cbeta protects against diabetes-induced impairment in arachidonic acid dilation of small coronary arteries.
    Zhou W; Wang XL; Lamping KG; Lee HC
    J Pharmacol Exp Ther; 2006 Oct; 319(1):199-207. PubMed ID: 16861398
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stress-induced glucocorticoid signaling remodels neurovascular coupling through impairment of cerebrovascular inwardly rectifying K+ channel function.
    Longden TA; Dabertrand F; Hill-Eubanks DC; Hammack SE; Nelson MT
    Proc Natl Acad Sci U S A; 2014 May; 111(20):7462-7. PubMed ID: 24808139
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hyposmotic challenge inhibits inward rectifying K+ channels in cerebral arterial smooth muscle cells.
    Wu BN; Luykenaar KD; Brayden JE; Giles WR; Corteling RL; Wiehler WB; Welsh DG
    Am J Physiol Heart Circ Physiol; 2007 Feb; 292(2):H1085-94. PubMed ID: 17056667
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ATP-sensitive potassium channel traffic regulation by adenosine and protein kinase C.
    Hu K; Huang CS; Jan YN; Jan LY
    Neuron; 2003 May; 38(3):417-32. PubMed ID: 12741989
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inversion of neurovascular coupling by subarachnoid blood depends on large-conductance Ca2+-activated K+ (BK) channels.
    Koide M; Bonev AD; Nelson MT; Wellman GC
    Proc Natl Acad Sci U S A; 2012 May; 109(21):E1387-95. PubMed ID: 22547803
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impaired function of coronary BK(Ca) channels in metabolic syndrome.
    Borbouse L; Dick GM; Asano S; Bender SB; Dincer UD; Payne GA; Neeb ZP; Bratz IN; Sturek M; Tune JD
    Am J Physiol Heart Circ Physiol; 2009 Nov; 297(5):H1629-37. PubMed ID: 19749164
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.