These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 22268499)
1. Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing. Zhigaltsev IV; Belliveau N; Hafez I; Leung AK; Huft J; Hansen C; Cullis PR Langmuir; 2012 Feb; 28(7):3633-40. PubMed ID: 22268499 [TBL] [Abstract][Full Text] [Related]
2. Production of limit size nanoliposomal systems with potential utility as ultra-small drug delivery agents. Zhigaltsev IV; Tam YK; Leung AK; Cullis PR J Liposome Res; 2016; 26(2):96-102. PubMed ID: 25856305 [TBL] [Abstract][Full Text] [Related]
3. Rapid synthesis of lipid nanoparticles containing hydrophobic inorganic nanoparticles. Kulkarni JA; Tam YYC; Chen S; Tam YK; Zaifman J; Cullis PR; Biswas S Nanoscale; 2017 Sep; 9(36):13600-13609. PubMed ID: 28876010 [TBL] [Abstract][Full Text] [Related]
4. Microfluidic directed formation of liposomes of controlled size. Jahn A; Vreeland WN; DeVoe DL; Locascio LE; Gaitan M Langmuir; 2007 May; 23(11):6289-93. PubMed ID: 17451256 [TBL] [Abstract][Full Text] [Related]
6. Polydispersity characterization of lipid nanoparticles for siRNA delivery using multiple detection size-exclusion chromatography. Zhang J; Haas RM; Leone AM Anal Chem; 2012 Jul; 84(14):6088-96. PubMed ID: 22816783 [TBL] [Abstract][Full Text] [Related]
7. Microfluidic Mixing: A General Method for Encapsulating Macromolecules in Lipid Nanoparticle Systems. Leung AK; Tam YY; Chen S; Hafez IM; Cullis PR J Phys Chem B; 2015 Jul; 119(28):8698-706. PubMed ID: 26087393 [TBL] [Abstract][Full Text] [Related]
8. The Effect of Size and Charge of Lipid Nanoparticles Prepared by Microfluidic Mixing on Their Lymph Node Transitivity and Distribution. Nakamura T; Kawai M; Sato Y; Maeki M; Tokeshi M; Harashima H Mol Pharm; 2020 Mar; 17(3):944-953. PubMed ID: 31990567 [TBL] [Abstract][Full Text] [Related]
9. Understanding the formation mechanism of lipid nanoparticles in microfluidic devices with chaotic micromixers. Maeki M; Fujishima Y; Sato Y; Yasui T; Kaji N; Ishida A; Tani H; Baba Y; Harashima H; Tokeshi M PLoS One; 2017; 12(11):e0187962. PubMed ID: 29182626 [TBL] [Abstract][Full Text] [Related]
10. Antisolvent precipitation of lipid nanoparticles in microfluidic systems - A comparative study. Riewe J; Erfle P; Melzig S; Kwade A; Dietzel A; Bunjes H Int J Pharm; 2020 Apr; 579():119167. PubMed ID: 32087265 [TBL] [Abstract][Full Text] [Related]
11. Characterization of Lipid Nanoparticles Containing Ionizable Cationic Lipids Using Design-of-Experiments Approach. Terada T; Kulkarni JA; Huynh A; Chen S; van der Meel R; Tam YYC; Cullis PR Langmuir; 2021 Jan; 37(3):1120-1128. PubMed ID: 33439022 [TBL] [Abstract][Full Text] [Related]
12. Development of a Microfluidic-Based Post-Treatment Process for Size-Controlled Lipid Nanoparticles and Application to siRNA Delivery. Kimura N; Maeki M; Sato Y; Ishida A; Tani H; Harashima H; Tokeshi M ACS Appl Mater Interfaces; 2020 Jul; 12(30):34011-34020. PubMed ID: 32667806 [TBL] [Abstract][Full Text] [Related]
13. Encapsulation and retention of chelated-copper inside hydrophobic nanoparticles: Liquid cored nanoparticles show better retention than a solid core formulation. Hervella P; Parra E; Needham D Eur J Pharm Biopharm; 2016 May; 102():64-76. PubMed ID: 26925504 [TBL] [Abstract][Full Text] [Related]
14. Assessing the heterogeneity level in lipid nanoparticles for siRNA delivery: size-based separation, compositional heterogeneity, and impact on bioperformance. Zhang J; Pei Y; Zhang H; Wang L; Arrington L; Zhang Y; Glass A; Leone AM Mol Pharm; 2013 Jan; 10(1):397-405. PubMed ID: 23210488 [TBL] [Abstract][Full Text] [Related]
15. Microfluidic Synthesis of Highly Potent Limit-size Lipid Nanoparticles for In Vivo Delivery of siRNA. Belliveau NM; Huft J; Lin PJ; Chen S; Leung AK; Leaver TJ; Wild AW; Lee JB; Taylor RJ; Tam YK; Hansen CL; Cullis PR Mol Ther Nucleic Acids; 2012 Aug; 1(8):e37. PubMed ID: 23344179 [TBL] [Abstract][Full Text] [Related]
16. Production of solid lipid nanoparticle suspensions using supercritical fluid extraction of emulsions (SFEE) for pulmonary delivery using the AERx system. Chattopadhyay P; Shekunov BY; Yim D; Cipolla D; Boyd B; Farr S Adv Drug Deliv Rev; 2007 Jul; 59(6):444-53. PubMed ID: 17582648 [TBL] [Abstract][Full Text] [Related]
17. Design of charge converting lipid nanoparticles via a microfluidic coating technique. Zöller K; Haddadzadegan S; Lindner S; Veider F; Bernkop-Schnürch A Drug Deliv Transl Res; 2024 Nov; 14(11):3173-3185. PubMed ID: 38381318 [TBL] [Abstract][Full Text] [Related]
18. Microfluidic hydrodynamic focusing based synthesis of POPC liposomes for model biological systems. Mijajlovic M; Wright D; Zivkovic V; Bi JX; Biggs MJ Colloids Surf B Biointerfaces; 2013 Apr; 104():276-81. PubMed ID: 23334181 [TBL] [Abstract][Full Text] [Related]
19. On the Formation and Morphology of Lipid Nanoparticles Containing Ionizable Cationic Lipids and siRNA. Kulkarni JA; Darjuan MM; Mercer JE; Chen S; van der Meel R; Thewalt JL; Tam YYC; Cullis PR ACS Nano; 2018 May; 12(5):4787-4795. PubMed ID: 29614232 [TBL] [Abstract][Full Text] [Related]
20. Formulating and Characterizing Lipid Nanoparticles for Gene Delivery using a Microfluidic Mixing Platform. Bailey-Hytholt CM; Ghosh P; Dugas J; Zarraga IE; Bandekar A J Vis Exp; 2021 Feb; (168):. PubMed ID: 33720139 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]