These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
486 related articles for article (PubMed ID: 22268576)
1. Adsorption, folding, and packing of an amphiphilic peptide at the air/water interface. Engin O; Sayar M J Phys Chem B; 2012 Feb; 116(7):2198-207. PubMed ID: 22268576 [TBL] [Abstract][Full Text] [Related]
2. Driving forces for adsorption of amphiphilic peptides to the air-water interface. Engin O; Villa A; Sayar M; Hess B J Phys Chem B; 2010 Sep; 114(34):11093-101. PubMed ID: 20687527 [TBL] [Abstract][Full Text] [Related]
3. Surface activity of amphiphilic helical beta-peptides from molecular dynamics simulation. Miller CA; Abbott NL; de Pablo JJ Langmuir; 2009 Mar; 25(5):2811-23. PubMed ID: 19437698 [TBL] [Abstract][Full Text] [Related]
4. Molecular dynamics simulations of low-ordered alzheimer β-amyloid oligomers from dimer to hexamer on self-assembled monolayers. Zhao J; Wang Q; Liang G; Zheng J Langmuir; 2011 Dec; 27(24):14876-87. PubMed ID: 22077332 [TBL] [Abstract][Full Text] [Related]
5. Molecular mechanism of β-sheet self-organization at water-hydrophobic interfaces. Nikolic A; Baud S; Rauscher S; Pomès R Proteins; 2011 Jan; 79(1):1-22. PubMed ID: 20938982 [TBL] [Abstract][Full Text] [Related]
6. Behavior of β-amyloid 1-16 at the air-water interface at varying pH by nonlinear spectroscopy and molecular dynamics simulations. Miller AE; Petersen PB; Hollars CW; Saykally RJ; Heyda J; Jungwirth P J Phys Chem A; 2011 Jun; 115(23):5873-80. PubMed ID: 21413795 [TBL] [Abstract][Full Text] [Related]
7. Molecular dynamics study of surfactin monolayer at the air/water interface. Gang HZ; Liu JF; Mu BZ J Phys Chem B; 2011 Nov; 115(44):12770-7. PubMed ID: 21958007 [TBL] [Abstract][Full Text] [Related]
8. On the relationship between peptide adsorption resistance and surface contact angle: a combined experimental and simulation single-molecule study. Schwierz N; Horinek D; Liese S; Pirzer T; Balzer BN; Hugel T; Netz RR J Am Chem Soc; 2012 Dec; 134(48):19628-38. PubMed ID: 23101566 [TBL] [Abstract][Full Text] [Related]
9. Dissecting the stability of a beta-hairpin peptide that folds in water: NMR and molecular dynamics analysis of the beta-turn and beta-strand contributions to folding. Griffiths-Jones SR; Maynard AJ; Searle MS J Mol Biol; 1999 Oct; 292(5):1051-69. PubMed ID: 10512702 [TBL] [Abstract][Full Text] [Related]
10. Amphiphilic laminin peptides at air/water interface--effect of single amino acid mutations on surface properties. Lakshmanan M; Dhathathreyan A J Colloid Interface Sci; 2006 Oct; 302(1):95-102. PubMed ID: 16842812 [TBL] [Abstract][Full Text] [Related]
11. Modeling the dynamic folding and surface-activity of a helical peptide adsorbing to a pendant bubble interface. Jain VP; Maldarelli C; Tu RS J Colloid Interface Sci; 2009 Mar; 331(2):364-70. PubMed ID: 19131072 [TBL] [Abstract][Full Text] [Related]
12. Characterization of peptide-guided polymer assembly at the air/water interface. Muenter AH; Hentschel J; Börner HG; Brezesinski G Langmuir; 2008 Apr; 24(7):3306-16. PubMed ID: 18290677 [TBL] [Abstract][Full Text] [Related]
13. Milk whey proteins and xanthan gum interactions in solution and at the air-water interface: a rheokinetic study. Perez AA; Sánchez CC; Patino JM; Rubiolo AC; Santiago LG Colloids Surf B Biointerfaces; 2010 Nov; 81(1):50-7. PubMed ID: 20692133 [TBL] [Abstract][Full Text] [Related]
14. Triggers for β-sheet formation at the hydrophobic-hydrophilic interface: high concentration, in-plane orientational order, and metal ion complexation. Hoernke M; Falenski JA; Schwieger C; Koksch B; Brezesinski G Langmuir; 2011 Dec; 27(23):14218-31. PubMed ID: 22011020 [TBL] [Abstract][Full Text] [Related]
15. Structure change of β-hairpin induced by turn optimization: an enhanced sampling molecular dynamics simulation study. Shao Q; Yang L; Gao YQ J Chem Phys; 2011 Dec; 135(23):235104. PubMed ID: 22191904 [TBL] [Abstract][Full Text] [Related]
16. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
17. Water adsorption on hydrophilic and hydrophobic self-assembled monolayers as proxies for atmospheric surfaces. A grand canonical Monte Carlo simulation study. Szori M; Jedlovszky P; Roeselová M Phys Chem Chem Phys; 2010 May; 12(18):4604-16. PubMed ID: 20428540 [TBL] [Abstract][Full Text] [Related]
18. Conformational properties of arenicins: from the bulk to the air-water interface. Travkova OG; Andrä J; Möhwald H; Brezesinski G Chemphyschem; 2010 Oct; 11(15):3262-8. PubMed ID: 20815009 [TBL] [Abstract][Full Text] [Related]
19. Atomic-level study of adsorption, conformational change, and dimerization of an α-helical peptide at graphene surface. Ou L; Luo Y; Wei G J Phys Chem B; 2011 Aug; 115(32):9813-22. PubMed ID: 21692466 [TBL] [Abstract][Full Text] [Related]
20. Why the OPLS-AA force field cannot produce the β-hairpin structure of H1 peptide in solution when comparing with the GROMOS 43A1 force field? Cao Z; Liu L; Wang J J Biomol Struct Dyn; 2011 Dec; 29(3):527-39. PubMed ID: 22066538 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]