These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 22268599)

  • 21. Comparison of the roles of nucleotide synthesis, polymerization, and recombination in the origin of autocatalytic sets of RNAs.
    Wu M; Higgs PG
    Astrobiology; 2011 Nov; 11(9):895-906. PubMed ID: 22059642
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diffusely bound Mg2+ ions slightly reorient stems I and II of the hammerhead ribozyme to increase the probability of formation of the catalytic core.
    Rueda D; Wick K; McDowell SE; Walter NG
    Biochemistry; 2003 Aug; 42(33):9924-36. PubMed ID: 12924941
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ribozyme-catalyzed dipeptide synthesis in monovalent metal ions alone.
    Sun L; Cui Z; Li C; Huang S; Zhang B
    Biochemistry; 2007 Mar; 46(12):3714-23. PubMed ID: 17330961
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Atomic force microscopy and anodic voltammetry characterization of a 49-mer diels-alderase ribozyme.
    Chiorcea-Paquim AM; Piedade JA; Wombacher R; Jäschke A; Oliveira-Brett AM
    Anal Chem; 2006 Dec; 78(24):8256-64. PubMed ID: 17165814
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The naturally trans-acting ribozyme RNase P RNA has leadzyme properties.
    Kikovska E; Mikkelsen NE; Kirsebom LA
    Nucleic Acids Res; 2005; 33(21):6920-30. PubMed ID: 16332695
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unusual metal ion catalysis in an acyl-transferase ribozyme.
    Suga H; Cowan JA; Szostak JW
    Biochemistry; 1998 Jul; 37(28):10118-25. PubMed ID: 9665717
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Redesign of an artificial ligase ribozyme based on the analysis of its structural elements.
    Ikawa Y; Matsumoto J; Horie S; Inoue T
    RNA Biol; 2005; 2(4):137-42. PubMed ID: 17114929
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis on a cooperative pathway involving multiple cations in hammerhead reactions.
    Takagi Y; Inoue A; Taira K
    J Am Chem Soc; 2004 Oct; 126(40):12856-64. PubMed ID: 15469282
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystal structure of an RNA polymerase ribozyme in complex with an antibody fragment.
    Piccirilli JA; Koldobskaya Y
    Philos Trans R Soc Lond B Biol Sci; 2011 Oct; 366(1580):2918-28. PubMed ID: 21930583
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Folding of the four-way RNA junction of the hairpin ribozyme.
    Walter F; Murchie AI; Lilley DM
    Biochemistry; 1998 Dec; 37(50):17629-36. PubMed ID: 9860879
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural roles of monovalent cations in the HDV ribozyme.
    Ke A; Ding F; Batchelor JD; Doudna JA
    Structure; 2007 Mar; 15(3):281-7. PubMed ID: 17355864
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Magnesium is essential for formation of an active complex of a hammerhead ribozyme with its substrate: an investigation by NMR spectroscopy.
    Orita M; Vinayak R; Andrus A; Takagi Y; Chiba A; Kaniwa H; Nishikawa F; Nishikawa S; Taira K
    Nucleic Acids Symp Ser; 1995; (34):219-20. PubMed ID: 8841630
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Confluence of theory and experiment reveals the catalytic mechanism of the Varkud satellite ribozyme.
    Ganguly A; Weissman BP; Giese TJ; Li NS; Hoshika S; Rao S; Benner SA; Piccirilli JA; York DM
    Nat Chem; 2020 Feb; 12(2):193-201. PubMed ID: 31959957
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biochemical analysis of hatchet self-cleaving ribozymes.
    Li S; Lünse CE; Harris KA; Breaker RR
    RNA; 2015 Nov; 21(11):1845-51. PubMed ID: 26385510
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantum mechanical/molecular mechanical simulation study of the mechanism of hairpin ribozyme catalysis.
    Nam K; Gao J; York DM
    J Am Chem Soc; 2008 Apr; 130(14):4680-91. PubMed ID: 18345664
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The structural basis of RNA-catalyzed RNA polymerization.
    Shechner DM; Bartel DP
    Nat Struct Mol Biol; 2011 Aug; 18(9):1036-42. PubMed ID: 21857665
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stem-Loop V of Varkud Satellite RNA Exhibits Characteristics of the Mg(2+) Bound Structure in the Presence of Monovalent Ions.
    Bergonzo C; Hall KB; Cheatham TE
    J Phys Chem B; 2015 Sep; 119(38):12355-64. PubMed ID: 26328924
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stopped-flow fluorescence spectroscopy of a group II intron ribozyme reveals that domain 1 is an independent folding unit with a requirement for specific Mg2+ ions in the tertiary structure.
    Qin PZ; Pyle AM
    Biochemistry; 1997 Apr; 36(16):4718-30. PubMed ID: 9125492
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A conformational switch controls hepatitis delta virus ribozyme catalysis.
    Ke A; Zhou K; Ding F; Cate JH; Doudna JA
    Nature; 2004 May; 429(6988):201-5. PubMed ID: 15141216
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NMR structure of varkud satellite ribozyme stem-loop V in the presence of magnesium ions and localization of metal-binding sites.
    Campbell DO; Bouchard P; Desjardins G; Legault P
    Biochemistry; 2006 Sep; 45(35):10591-605. PubMed ID: 16939211
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.