These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 22268718)

  • 61. Transcriptome-wide identification of microRNA targets in rice.
    Li YF; Zheng Y; Addo-Quaye C; Zhang L; Saini A; Jagadeeswaran G; Axtell MJ; Zhang W; Sunkar R
    Plant J; 2010 Jun; 62(5):742-59. PubMed ID: 20202174
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Biogenesis of trans-acting siRNAs, endogenous secondary siRNAs in plants.
    Yoshikawa M
    Genes Genet Syst; 2013; 88(2):77-84. PubMed ID: 23832299
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening.
    Moxon S; Jing R; Szittya G; Schwach F; Rusholme Pilcher RL; Moulton V; Dalmay T
    Genome Res; 2008 Oct; 18(10):1602-9. PubMed ID: 18653800
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Methodologies for Discovery and Quantitative Profiling of sRNAs in Potato.
    Križnik M; Zagorščak M; Gruden K
    Methods Mol Biol; 2021; 2354():221-260. PubMed ID: 34448163
    [TBL] [Abstract][Full Text] [Related]  

  • 65. MaturePred: efficient identification of microRNAs within novel plant pre-miRNAs.
    Xuan P; Guo M; Huang Y; Li W; Huang Y
    PLoS One; 2011; 6(11):e27422. PubMed ID: 22110646
    [TBL] [Abstract][Full Text] [Related]  

  • 66. SRNAome and degradome sequencing analysis reveals specific regulation of sRNA in response to chilling injury in tomato fruit.
    Zuo J; Wang Q; Han C; Ju Z; Cao D; Zhu B; Luo Y; Gao L
    Physiol Plant; 2017 Jun; 160(2):142-154. PubMed ID: 27595790
    [TBL] [Abstract][Full Text] [Related]  

  • 67. P-SAMS: a web site for plant artificial microRNA and synthetic trans-acting small interfering RNA design.
    Fahlgren N; Hill ST; Carrington JC; Carbonell A
    Bioinformatics; 2016 Jan; 32(1):157-8. PubMed ID: 26382195
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Dynamically expressed small RNAs, substantially driven by genomic structural variants, contribute to transcriptomic changes during tomato domestication.
    Qing Y; Zheng Y; Mlotshwa S; Smith HN; Wang X; Zhai X; van der Knaap E; Wang Y; Fei Z
    Plant J; 2022 Jun; 110(6):1536-1550. PubMed ID: 35514123
    [TBL] [Abstract][Full Text] [Related]  

  • 69. miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth.
    Marin E; Jouannet V; Herz A; Lokerse AS; Weijers D; Vaucheret H; Nussaume L; Crespi MD; Maizel A
    Plant Cell; 2010 Apr; 22(4):1104-17. PubMed ID: 20363771
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Characterization of small RNAs and their target genes in wheat seedlings using sequencing-based approaches.
    Li YF; Zheng Y; Jagadeeswaran G; Sunkar R
    Plant Sci; 2013 Apr; 203-204():17-24. PubMed ID: 23415324
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Computational evidence for hundreds of non-conserved plant microRNAs.
    Lindow M; Krogh A
    BMC Genomics; 2005 Sep; 6():119. PubMed ID: 16159385
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Genomic profiling of exogenous abscisic acid-responsive microRNAs in tomato (Solanum lycopersicum).
    Cheng HY; Wang Y; Tao X; Fan YF; Dai Y; Yang H; Ma XR
    BMC Genomics; 2016 Jun; 17():423. PubMed ID: 27260799
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Computational identification of novel family members of microRNA genes in Arabidopsis thaliana and Oryza sativa.
    Li Y; Li W; Jin YX
    Acta Biochim Biophys Sin (Shanghai); 2005 Feb; 37(2):75-87. PubMed ID: 15685364
    [TBL] [Abstract][Full Text] [Related]  

  • 74. miRNAFold: a web server for fast miRNA precursor prediction in genomes.
    Tav C; Tempel S; Poligny L; Tahi F
    Nucleic Acids Res; 2016 Jul; 44(W1):W181-4. PubMed ID: 27242364
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A survey of software tools for microRNA discovery and characterization using RNA-seq.
    Bortolomeazzi M; Gaffo E; Bortoluzzi S
    Brief Bioinform; 2019 May; 20(3):918-930. PubMed ID: 29126230
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Analysis of antisense expression by whole genome tiling microarrays and siRNAs suggests mis-annotation of Arabidopsis orphan protein-coding genes.
    Richardson CR; Luo QJ; Gontcharova V; Jiang YW; Samanta M; Youn E; Rock CD
    PLoS One; 2010 May; 5(5):e10710. PubMed ID: 20520764
    [TBL] [Abstract][Full Text] [Related]  

  • 77. An Online Database for Exploring Over 2,000 Arabidopsis Small RNA Libraries.
    Feng L; Zhang F; Zhang H; Zhao Y; Meyers BC; Zhai J
    Plant Physiol; 2020 Feb; 182(2):685-691. PubMed ID: 31843802
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Identification of soybean seed developmental stage-specific and tissue-specific miRNA targets by degradome sequencing.
    Shamimuzzaman M; Vodkin L
    BMC Genomics; 2012 Jul; 13():310. PubMed ID: 22799740
    [TBL] [Abstract][Full Text] [Related]  

  • 79. TAPIR, a web server for the prediction of plant microRNA targets, including target mimics.
    Bonnet E; He Y; Billiau K; Van de Peer Y
    Bioinformatics; 2010 Jun; 26(12):1566-8. PubMed ID: 20430753
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Mirinho: An efficient and general plant and animal pre-miRNA predictor for genomic and deep sequencing data.
    Higashi S; Fournier C; Gautier C; Gaspin C; Sagot MF
    BMC Bioinformatics; 2015 May; 16():179. PubMed ID: 26022464
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.