BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 22269041)

  • 1. Developing a powerful in silico tool for the discovery of novel caspase-3 substrates: a preliminary screening of the human proteome.
    Ayyash M; Tamimi H; Ashhab Y
    BMC Bioinformatics; 2012 Jan; 13():14. PubMed ID: 22269041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ScreenCap3: Improving prediction of caspase-3 cleavage sites using experimentally verified noncleavage sites.
    Fu SC; Imai K; Sawasaki T; Tomii K
    Proteomics; 2014 Sep; 14(17-18):2042-6. PubMed ID: 24995852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cascleave 2.0, a new approach for predicting caspase and granzyme cleavage targets.
    Wang M; Zhao XM; Tan H; Akutsu T; Whisstock JC; Song J
    Bioinformatics; 2014 Jan; 30(1):71-80. PubMed ID: 24149049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multi-factor model for caspase degradome prediction.
    Wee LJ; Tong JC; Tan TW; Ranganathan S
    BMC Genomics; 2009 Dec; 10 Suppl 3(Suppl 3):S6. PubMed ID: 19958504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Caspase cleavage sites in the human proteome: CaspDB, a database of predicted substrates.
    Kumar S; van Raam BJ; Salvesen GS; Cieplak P
    PLoS One; 2014; 9(10):e110539. PubMed ID: 25330111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anamorsin, a novel caspase-3 substrate in neurodegeneration.
    Yun N; Lee YM; Kim C; Shibayama H; Tanimura A; Hamanaka Y; Kanakura Y; Park IS; Jo A; Shin JH; Ju C; Kim WK; Oh YJ
    J Biol Chem; 2014 Aug; 289(32):22183-95. PubMed ID: 24973211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pripper: prediction of caspase cleavage sites from whole proteomes.
    Piippo M; Lietzén N; Nevalainen OS; Salmi J; Nyman TA
    BMC Bioinformatics; 2010 Jun; 11():320. PubMed ID: 20546630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward computer-based cleavage site prediction of cysteine endopeptidases.
    Lohmüller T; Wenzler D; Hagemann S; Kiess W; Peters C; Dandekar T; Reinheckel T
    Biol Chem; 2003 Jun; 384(6):899-909. PubMed ID: 12887057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep profiling of protease substrate specificity enabled by dual random and scanned human proteome substrate phage libraries.
    Zhou J; Li S; Leung KK; O'Donovan B; Zou JY; DeRisi JL; Wells JA
    Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25464-25475. PubMed ID: 32973096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteome-wide identification of family member-specific natural substrate repertoire of caspases.
    Ju W; Valencia CA; Pang H; Ke Y; Gao W; Dong B; Liu R
    Proc Natl Acad Sci U S A; 2007 Sep; 104(36):14294-9. PubMed ID: 17728405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PROSPER: an integrated feature-based tool for predicting protease substrate cleavage sites.
    Song J; Tan H; Perry AJ; Akutsu T; Webb GI; Whisstock JC; Pike RN
    PLoS One; 2012; 7(11):e50300. PubMed ID: 23209700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CaSPredictor: a new computer-based tool for caspase substrate prediction.
    Garay-Malpartida HM; Occhiucci JM; Alves J; Belizário JE
    Bioinformatics; 2005 Jun; 21 Suppl 1():i169-76. PubMed ID: 15961454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting caspase substrate cleavage sites based on a hybrid SVM-PSSM method.
    Li D; Jiang Z; Yu W; Du L
    Protein Pept Lett; 2010 Dec; 17(12):1566-71. PubMed ID: 20858203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GraBCas: a bioinformatics tool for score-based prediction of Caspase- and Granzyme B-cleavage sites in protein sequences.
    Backes C; Kuentzer J; Lenhof HP; Comtesse N; Meese E
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W208-13. PubMed ID: 15980455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of nuclear proteins using nuclear translocation signals proposed by probabilistic latent semantic indexing.
    Su EC; Chang JM; Cheng CW; Sung TY; Hsu WL
    BMC Bioinformatics; 2012; 13 Suppl 17(Suppl 17):S13. PubMed ID: 23282098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SVM-based prediction of caspase substrate cleavage sites.
    Wee LJ; Tan TW; Ranganathan S
    BMC Bioinformatics; 2006 Dec; 7 Suppl 5(Suppl 5):S14. PubMed ID: 17254298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Executioner caspase-3 and caspase-7 are functionally distinct proteases.
    Walsh JG; Cullen SP; Sheridan C; Lüthi AU; Gerner C; Martin SJ
    Proc Natl Acad Sci U S A; 2008 Sep; 105(35):12815-9. PubMed ID: 18723680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deorphanizing Caspase-3 and Caspase-9 Substrates In and Out of Apoptosis with Deep Substrate Profiling.
    Araya LE; Soni IV; Hardy JA; Julien O
    ACS Chem Biol; 2021 Nov; 16(11):2280-2296. PubMed ID: 34553588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The CASBAH: a searchable database of caspase substrates.
    Lüthi AU; Martin SJ
    Cell Death Differ; 2007 Apr; 14(4):641-50. PubMed ID: 17273173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PSSM-Suc: Accurately predicting succinylation using position specific scoring matrix into bigram for feature extraction.
    Dehzangi A; López Y; Lal SP; Taherzadeh G; Michaelson J; Sattar A; Tsunoda T; Sharma A
    J Theor Biol; 2017 Jul; 425():97-102. PubMed ID: 28483566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.