These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 22269326)

  • 1. Inhibition of microRNA-29b reduces murine abdominal aortic aneurysm development.
    Maegdefessel L; Azuma J; Toh R; Merk DR; Deng A; Chin JT; Raaz U; Schoelmerich AM; Raiesdana A; Leeper NJ; McConnell MV; Dalman RL; Spin JM; Tsao PS
    J Clin Invest; 2012 Feb; 122(2):497-506. PubMed ID: 22269326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicroRNA-145 Mediates the Formation of Angiotensin II-Induced Murine Abdominal Aortic Aneurysm.
    Wu J; Wang J; Li X; Liu X; Yu X; Tian Y
    Heart Lung Circ; 2017 Jun; 26(6):619-626. PubMed ID: 27956160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prevention of abdominal aortic aneurysm by anti-microRNA-712 or anti-microRNA-205 in angiotensin II-infused mice.
    Kim CW; Kumar S; Son DJ; Jang IH; Griendling KK; Jo H
    Arterioscler Thromb Vasc Biol; 2014 Jul; 34(7):1412-21. PubMed ID: 24812324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MicroRNA-21 blocks abdominal aortic aneurysm development and nicotine-augmented expansion.
    Maegdefessel L; Azuma J; Toh R; Deng A; Merk DR; Raiesdana A; Leeper NJ; Raaz U; Schoelmerich AM; McConnell MV; Dalman RL; Spin JM; Tsao PS
    Sci Transl Med; 2012 Feb; 4(122):122ra22. PubMed ID: 22357537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperglycemia limits experimental aortic aneurysm progression.
    Miyama N; Dua MM; Yeung JJ; Schultz GM; Asagami T; Sho E; Sho M; Dalman RL
    J Vasc Surg; 2010 Oct; 52(4):975-83. PubMed ID: 20678880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic Ablation of MicroRNA-33 Attenuates Inflammation and Abdominal Aortic Aneurysm Formation via Several Anti-Inflammatory Pathways.
    Nakao T; Horie T; Baba O; Nishiga M; Nishino T; Izuhara M; Kuwabara Y; Nishi H; Usami S; Nakazeki F; Ide Y; Koyama S; Kimura M; Sowa N; Ohno S; Aoki H; Hasegawa K; Sakamoto K; Minatoya K; Kimura T; Ono K
    Arterioscler Thromb Vasc Biol; 2017 Nov; 37(11):2161-2170. PubMed ID: 28882868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Licochalcone A attenuates abdominal aortic aneurysm induced by angiotensin II via regulating the miR-181b/SIRT1/HO-1 signaling.
    Hou X; Yang S; Zheng Y
    J Cell Physiol; 2019 May; 234(5):7560-7568. PubMed ID: 30417353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of ADAM9 and miR-126 in the development of abdominal aortic aneurysm.
    Shen G; Sun Q; Yao Y; Li S; Liu G; Yuan C; Li H; Xu Y; Wang H
    Atherosclerosis; 2020 Mar; 297():47-54. PubMed ID: 32078829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deficiency of cathepsin S attenuates angiotensin II-induced abdominal aortic aneurysm formation in apolipoprotein E-deficient mice.
    Qin Y; Cao X; Guo J; Zhang Y; Pan L; Zhang H; Li H; Tang C; Du J; Shi GP
    Cardiovasc Res; 2012 Dec; 96(3):401-10. PubMed ID: 22871592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNA-181b Controls Atherosclerosis and Aneurysms Through Regulation of TIMP-3 and Elastin.
    Di Gregoli K; Mohamad Anuar NN; Bianco R; White SJ; Newby AC; George SJ; Johnson JL
    Circ Res; 2017 Jan; 120(1):49-65. PubMed ID: 27756793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel Murine and Human Aortic Wall Genomics Reveals Metabolic Reprogramming as Key Driver of Abdominal Aortic Aneurysm Progression.
    Gäbel G; Northoff BH; Balboa A; Becirovic-Agic M; Petri M; Busch A; Maegdefessel L; Mahlmann A; Ludwig S; Teupser D; de Waard V; Golledge J; Wanhainen A; Wågsäter D; Holdt LM; Lindeman JHN
    J Am Heart Assoc; 2021 Sep; 10(17):e020231. PubMed ID: 34420357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. miR-29b participates in early aneurysm development in Marfan syndrome.
    Merk DR; Chin JT; Dake BA; Maegdefessel L; Miller MO; Kimura N; Tsao PS; Iosef C; Berry GJ; Mohr FW; Spin JM; Alvira CM; Robbins RC; Fischbein MP
    Circ Res; 2012 Jan; 110(2):312-24. PubMed ID: 22116819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High serum thrombospondin-1 concentration is associated with slower abdominal aortic aneurysm growth and deficiency of thrombospondin-1 promotes angiotensin II induced aortic aneurysm in mice.
    Krishna SM; Seto SW; Jose R; Li J; Moxon J; Clancy P; Crossman DJ; Norman P; Emeto TI; Golledge J
    Clin Sci (Lond); 2017 Jun; 131(12):1261-1281. PubMed ID: 28364044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MicroRNAs, fibrotic remodeling, and aortic aneurysms.
    Milewicz DM
    J Clin Invest; 2012 Feb; 122(2):490-3. PubMed ID: 22269322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptide inhibitor of CXCL4-CCL5 heterodimer formation, MKEY, inhibits experimental aortic aneurysm initiation and progression.
    Iida Y; Xu B; Xuan H; Glover KJ; Tanaka H; Hu X; Fujimura N; Wang W; Schultz JR; Turner CR; Dalman RL
    Arterioscler Thromb Vasc Biol; 2013 Apr; 33(4):718-26. PubMed ID: 23288157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abdominal Aortic Aneurysm-Associated MicroRNA-516a-5p Regulates Expressions of Methylenetetrahydrofolate Reductase, Matrix Metalloproteinase-2, and Tissue Inhibitor of Matrix Metalloproteinase-1 in Human Abdominal Aortic Vascular Smooth Muscle Cells.
    Chan CYT; Cheuk BLY; Cheng SWK
    Ann Vasc Surg; 2017 Jul; 42():263-273. PubMed ID: 28288890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MiR-144-5p limits experimental abdominal aortic aneurysm formation by mitigating M1 macrophage-associated inflammation: Suppression of TLR2 and OLR1.
    Shi X; Ma W; Li Y; Wang H; Pan S; Tian Y; Xu C; Li L
    J Mol Cell Cardiol; 2020 Jun; 143():1-14. PubMed ID: 32278833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. H19 Induces Abdominal Aortic Aneurysm Development and Progression.
    Li DY; Busch A; Jin H; Chernogubova E; Pelisek J; Karlsson J; Sennblad B; Liu S; Lao S; Hofmann P; Bäcklund A; Eken SM; Roy J; Eriksson P; Dacken B; Ramanujam D; Dueck A; Engelhardt S; Boon RA; Eckstein HH; Spin JM; Tsao PS; Maegdefessel L
    Circulation; 2018 Oct; 138(15):1551-1568. PubMed ID: 29669788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. miR-10b promotes aortic aneurysm formation and aortic rupture in angiotensin II-induced ApoE-deficient mice.
    Wågsäter D; Ramilo AB; Näsström M; Kunath A; Agic MB; Mani K; Wanhainen A; Petri MH
    Vascul Pharmacol; 2021 Dec; 141():106927. PubMed ID: 34715373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Modified Murine Abdominal Aortic Aneurysm Rupture Model Using Elastase Perfusion and Angiotensin II Infusion.
    Yue J; Yin L; Shen J; Liu Z
    Ann Vasc Surg; 2020 Aug; 67():474-481. PubMed ID: 32171859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.