BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 22269969)

  • 1. Lens proteomics: analysis of rat crystallins when lenses are exposed to dexamethasone.
    Wang L; Zhao WC; Yin XL; Ge JY; Bu ZG; Ge HY; Meng QF; Liu P
    Mol Biosyst; 2012 Mar; 8(3):888-901. PubMed ID: 22269969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomics analysis of water insoluble-urea soluble crystallins from normal and dexamethasone exposed lens.
    Wang L; Liu D; Liu P; Yu Y
    Mol Vis; 2011; 17():3423-36. PubMed ID: 22219638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic analysis of human age-related nuclear cataracts and normal lens nuclei.
    Su S; Liu P; Zhang H; Li Z; Song Z; Zhang L; Chen S
    Invest Ophthalmol Vis Sci; 2011 Jun; 52(7):4182-91. PubMed ID: 21436267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. alpha-Lipoic acid alters post-translational modifications and protects the chaperone activity of lens alpha-crystallin in naphthalene-induced cataract.
    Chen Y; Yi L; Yan G; Fang Y; Jang Y; Wu X; Zhou X; Wei L
    Curr Eye Res; 2010 Jul; 35(7):620-30. PubMed ID: 20597648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crosslinking of human lens 9 kDa gammaD-crystallin fragment in vitro and in vivo.
    Srivastava OP; Srivastava K
    Mol Vis; 2003 Dec; 9():644-56. PubMed ID: 14685148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of hormones and growth factors on lens protein composition: the effect of dexamethasone and PDGF-AA.
    Vinader LM; van Genesen ST; de Jong WW; Lubsen NH
    Mol Vis; 2003 Dec; 9():723-9. PubMed ID: 14685140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced C-terminal truncation of alphaA- and alphaB-crystallins in diabetic lenses.
    Thampi P; Hassan A; Smith JB; Abraham EC
    Invest Ophthalmol Vis Sci; 2002 Oct; 43(10):3265-72. PubMed ID: 12356833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of alphaA-crystallin from high molecular weight aggregates in the normal human lens.
    Fujii N; Awakura M; Takemoto L; Inomata M; Takata T; Fujii N; Saito T
    Mol Vis; 2003 Jul; 9():315-22. PubMed ID: 12847419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of glucocorticoid-induced changes of Na(+), K(+)-ATPase in rat lens by a glucocorticoid receptor antagonist RU486.
    Xie GL; Yan H; Lu ZF
    Exp Eye Res; 2010 Oct; 91(4):544-9. PubMed ID: 20637751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses.
    Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP
    Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of betaA3-crystallin associated proteinase from alpha-crystallin fraction of human lenses.
    Srivastava OP; Srivastava K; Chaves JM
    Mol Vis; 2008; 14():1872-85. PubMed ID: 18949065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Existence of deamidated alphaB-crystallin fragments in normal and cataractous human lenses.
    Srivastava OP; Srivastava K
    Mol Vis; 2003 Apr; 9():110-8. PubMed ID: 12707643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tracking pathology with proteomics: identification of in vivo degradation products of alphaB-crystallin.
    Colvis CM; Duglas-Tabor Y; Werth KB; Vieira NE; Kowalak JA; Janjani A; Yergey AL; Garland DL
    Electrophoresis; 2000 Jun; 21(11):2219-27. PubMed ID: 10892732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lens proteomics: analysis of rat crystallin sequences and two-dimensional electrophoresis map.
    Lampi KJ; Shih M; Ueda Y; Shearer TR; David LL
    Invest Ophthalmol Vis Sci; 2002 Jan; 43(1):216-24. PubMed ID: 11773034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative proteomics analysis of degenerative eye lenses of nocturnal rice eel and catfish as compared to diurnal zebrafish.
    Lin YR; Mok HK; Wu YH; Liang SS; Hsiao CC; Huang CH; Chiou SH
    Mol Vis; 2013; 19():623-37. PubMed ID: 23559856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of hyperbaric oxygen on the crystallins of cultured rabbit lenses: a possible catalytic role for copper.
    Padgaonkar VA; Leverenz VR; Fowler KE; Reddy VN; Giblin FJ
    Exp Eye Res; 2000 Oct; 71(4):371-83. PubMed ID: 10995558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Susceptibility of ovine lens crystallins to proteolytic cleavage during formation of hereditary cataract.
    Robertson LJ; David LL; Riviere MA; Wilmarth PA; Muir MS; Morton JD
    Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):1016-22. PubMed ID: 18326725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing alpha-crystallin structure using chemical cross-linkers and mass spectrometry.
    Peterson JJ; Young MM; Takemoto LJ
    Mol Vis; 2004 Nov; 10():857-66. PubMed ID: 15570221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding of dexamethasone by alpha-crystallin.
    Jobling AI; Stevens A; Augusteyn RC
    Invest Ophthalmol Vis Sci; 2001 Jul; 42(8):1829-32. PubMed ID: 11431449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.