These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
389 related articles for article (PubMed ID: 22270624)
21. Discovery and introduction of a (3,18)-connected net as an ideal blueprint for the design of metal-organic frameworks. Guillerm V; Weseliński Ł; Belmabkhout Y; Cairns AJ; D'Elia V; Wojtas Ł; Adil K; Eddaoudi M Nat Chem; 2014 Aug; 6(8):673-80. PubMed ID: 25054936 [TBL] [Abstract][Full Text] [Related]
22. In silico prediction of MOFs with high deliverable capacity or internal surface area. Bao Y; Martin RL; Haranczyk M; Deem MW Phys Chem Chem Phys; 2015 May; 17(18):11962-73. PubMed ID: 25716343 [TBL] [Abstract][Full Text] [Related]
23. The effect of structural and energetic parameters of MOFs and COFs towards the improvement of their hydrogen storage properties. Tylianakis E; Klontzas E; Froudakis GE Nanotechnology; 2009 May; 20(20):204030. PubMed ID: 19420678 [TBL] [Abstract][Full Text] [Related]
24. High Methane Storage Working Capacity in Metal-Organic Frameworks with Acrylate Links. Jiang J; Furukawa H; Zhang YB; Yaghi OM J Am Chem Soc; 2016 Aug; 138(32):10244-51. PubMed ID: 27442620 [TBL] [Abstract][Full Text] [Related]
25. Studies on metal-organic frameworks of Cu(II) with isophthalate linkers for hydrogen storage. Yan Y; Yang S; Blake AJ; Schröder M Acc Chem Res; 2014 Feb; 47(2):296-307. PubMed ID: 24168725 [TBL] [Abstract][Full Text] [Related]
26. The Importance of Highly Connected Building Units in Reticular Chemistry: Thoughtful Design of Metal-Organic Frameworks. Guillerm V; Eddaoudi M Acc Chem Res; 2021 Sep; 54(17):3298-3312. PubMed ID: 34227389 [TBL] [Abstract][Full Text] [Related]
27. Engineering homochiral metal-organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation. Liu Y; Xuan W; Cui Y Adv Mater; 2010 Oct; 22(37):4112-35. PubMed ID: 20799372 [TBL] [Abstract][Full Text] [Related]
28. Charge Transport in Zirconium-Based Metal-Organic Frameworks. Kung CW; Goswami S; Hod I; Wang TC; Duan J; Farha OK; Hupp JT Acc Chem Res; 2020 Jun; 53(6):1187-1195. PubMed ID: 32401008 [TBL] [Abstract][Full Text] [Related]
29. [Synthesis and applications of chiral metal-organic framework in the selective separation of enantiomers]. Qi X; Li X; Bai Y; Liu H Se Pu; 2016 Jan; 34(1):10-5. PubMed ID: 27319158 [TBL] [Abstract][Full Text] [Related]
31. New Reticular Chemistry of the Rod Secondary Building Unit: Synthesis, Structure, and Natural Gas Storage of a Series of Three-Way Rod Amide-Functionalized Metal-Organic Frameworks. Zhang YF; Zhang ZH; Ritter L; Fang H; Wang Q; Space B; Zhang YB; Xue DX; Bai J J Am Chem Soc; 2021 Aug; 143(31):12202-12211. PubMed ID: 34328001 [TBL] [Abstract][Full Text] [Related]
32. Recent Progress in Metal-Organic Frameworks and Their Derived Nanostructures for Energy and Environmental Applications. Xie Z; Xu W; Cui X; Wang Y ChemSusChem; 2017 Apr; 10(8):1645-1663. PubMed ID: 28150903 [TBL] [Abstract][Full Text] [Related]
33. Mechanochemistry of Metal-Organic Frameworks under Pressure and Shock. Zhou X; Miao Y; Suslick KS; Dlott DD Acc Chem Res; 2020 Dec; 53(12):2806-2815. PubMed ID: 32935969 [TBL] [Abstract][Full Text] [Related]
34. Ultrahigh porosity in metal-organic frameworks. Furukawa H; Ko N; Go YB; Aratani N; Choi SB; Choi E; Yazaydin AO; Snurr RQ; O'Keeffe M; Kim J; Yaghi OM Science; 2010 Jul; 329(5990):424-8. PubMed ID: 20595583 [TBL] [Abstract][Full Text] [Related]
35. Tuning the structure and function of metal-organic frameworks via linker design. Lu W; Wei Z; Gu ZY; Liu TF; Park J; Park J; Tian J; Zhang M; Zhang Q; Gentle T; Bosch M; Zhou HC Chem Soc Rev; 2014 Aug; 43(16):5561-93. PubMed ID: 24604071 [TBL] [Abstract][Full Text] [Related]
36. Homochiral metal-organic frameworks and their application in chromatography enantioseparations. Peluso P; Mamane V; Cossu S J Chromatogr A; 2014 Oct; 1363():11-26. PubMed ID: 25001329 [TBL] [Abstract][Full Text] [Related]
37. Expanded organic building units for the construction of highly porous metal-organic frameworks. Kong GQ; Han ZD; He Y; Ou S; Zhou W; Yildirim T; Krishna R; Zou C; Chen B; Wu CD Chemistry; 2013 Oct; 19(44):14886-94. PubMed ID: 24115143 [TBL] [Abstract][Full Text] [Related]
38. Accelerating Discovery of Metal-Organic Frameworks for Methane Adsorption with Hierarchical Screening and Deep Learning. Wang R; Zhong Y; Bi L; Yang M; Xu D ACS Appl Mater Interfaces; 2020 Nov; 12(47):52797-52807. PubMed ID: 33175490 [TBL] [Abstract][Full Text] [Related]
39. Machine Learning Predictions of Methane Storage in MOFs: Diverse Materials, Multiple Operating Conditions, and Reverse Models. Ahmed A; Nath K; Matzger AJ; Siegel DJ ACS Appl Mater Interfaces; 2024 Oct; ():. PubMed ID: 39356201 [TBL] [Abstract][Full Text] [Related]
40. In Silico Evolution of High-Performing Metal Organic Frameworks for Methane Adsorption. Beauregard N; Pardakhti M; Srivastava R J Chem Inf Model; 2021 Jul; 61(7):3232-3239. PubMed ID: 34264660 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]