These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 22271710)

  • 1. Telerobotic-assisted bone-drilling system using bilateral control with feed operation scaling and cutting force scaling.
    Kasahara Y; Kawana H; Usuda S; Ohnishi K
    Int J Med Robot; 2012 Jun; 8(2):221-9. PubMed ID: 22271710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental investigations and statistical modeling of cutting force and torque in rotary ultrasonic bone drilling of human cadaver bone.
    Singh RP; Pandey PM; Mridha AR; Joshi T
    Proc Inst Mech Eng H; 2020 Feb; 234(2):148-162. PubMed ID: 31749398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feed rate control in robotic bone drilling process.
    Boiadjiev T; Boiadjiev G; Delchev K; Chavdarov I; Kastelov R
    Proc Inst Mech Eng H; 2021 Mar; 235(3):273-280. PubMed ID: 33231113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Research of the master-slave robot surgical system with the function of force feedback.
    Shi Y; Zhou C; Xie L; Chen Y; Jiang J; Zhang Z; Deng Z
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28513095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Open core control software for surgical robots.
    Arata J; Kozuka H; Kim HW; Takesue N; Vladimirov B; Sakaguchi M; Tokuda J; Hata N; Chinzei K; Fujimoto H
    Int J Comput Assist Radiol Surg; 2010 May; 5(3):211-20. PubMed ID: 20033506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro comparison of conventional surgical and rotary ultrasonic bone drilling techniques.
    Gupta V; Singh RP; Pandey PM; Gupta R
    Proc Inst Mech Eng H; 2020 Apr; 234(4):398-411. PubMed ID: 32026750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis and optimization of bone machining for robotic orthopedic surgeries.
    Pell DJ; Soshi M
    Int J Med Robot; 2018 Aug; 14(4):e1910. PubMed ID: 29603572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and performance study of an orthopaedic surgery robotized module for automatic bone drilling.
    Boiadjiev G; Kastelov R; Boiadjiev T; Kotev V; Delchev K; Zagurski K; Vitkov V
    Int J Med Robot; 2013 Dec; 9(4):455-63. PubMed ID: 23441029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechatronic design of haptic forceps for robotic surgery.
    Rizun P; Gunn D; Cox B; Sutherland G
    Int J Med Robot; 2006 Dec; 2(4):341-9. PubMed ID: 17520653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A New Template and Teleoperation System for Human-Guided Spine Surgery.
    Azimifar F; Hassani K; Hossein Saveh A; Izadi F
    Artif Organs; 2019 Apr; 43(4):424-434. PubMed ID: 30230562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental investigations of forces and torque in conventional and ultrasonically-assisted drilling of cortical bone.
    Alam K; Mitrofanov AV; Silberschmidt VV
    Med Eng Phys; 2011 Mar; 33(2):234-9. PubMed ID: 21044856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and implementation of a control architecture for robot-assisted orthopaedic surgery.
    Barkana DE
    Int J Med Robot; 2010 Mar; 6(1):42-56. PubMed ID: 19943336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of parameters on temperature rise and chips morphology in low-frequency vibration-assisted bone drilling.
    Han Y; Lv Q; Song Y; Zhang Q
    Med Eng Phys; 2022 May; 103():103791. PubMed ID: 35500992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental investigation on the effect of drill quality on the performance of bone drilling.
    Alam K; Piya S; Al-Ghaithi A; Silberschmidth V
    Biomed Tech (Berl); 2020 Jan; 65(1):113-120. PubMed ID: 31437122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using an admittance algorithm for bone drilling procedures.
    Accini F; Díaz I; Gil JJ
    Comput Methods Programs Biomed; 2016 Jan; 123():150-8. PubMed ID: 26516110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reaction force/torque sensing in a master-slave robot system without mechanical sensors.
    Liu T; Li C; Inoue Y; Shibata K
    Sensors (Basel); 2010; 10(8):7134-45. PubMed ID: 22163595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Haptic control with environment force estimation for telesurgery.
    Bhattacharjee T; Son HI; Lee DY
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3241-4. PubMed ID: 19163398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virtual tool for bilaterally controlled forceps robot--for minimally invasive surgery.
    Abeykoon AM; Ohnishi K
    Int J Med Robot; 2007 Sep; 3(3):271-80. PubMed ID: 17729375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application research of master-slave cranio-maxillofacial surgical robot based on force feedback.
    Xu C; Wang Y; Zhou C; Zhang Z; Xie L; Andersson K; Feng L
    Proc Inst Mech Eng H; 2021 May; 235(5):583-596. PubMed ID: 33645309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Force and torque modelling of drilling simulation for orthopaedic surgery.
    MacAvelia T; Ghasempoor A; Janabi-Sharifi F
    Comput Methods Biomech Biomed Engin; 2014; 17(12):1285-94. PubMed ID: 23167723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.