BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 22271763)

  • 1. Accuracy of genomic selection methods in a standard data set of loblolly pine (Pinus taeda L.).
    Resende MF; Muñoz P; Resende MD; Garrick DJ; Fernando RL; Davis JM; Jokela EJ; Martin TA; Peter GF; Kirst M
    Genetics; 2012 Apr; 190(4):1503-10. PubMed ID: 22271763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic prediction for fusiform rust disease incidence in a large cloned population of Pinus taeda.
    Shalizi MN; Cumbie WP; Isik F
    G3 (Bethesda); 2021 Sep; 11(9):. PubMed ID: 34544145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Major gene detection for fusiform rust resistance using Bayesian complex segregation analysis in loblolly pine.
    Li H; Ghosh S; Amerson H; Li B
    Theor Appl Genet; 2006 Sep; 113(5):921-9. PubMed ID: 16896716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving accuracy of genomic prediction by genetic architecture based priors in a Bayesian model.
    Gao N; Li J; He J; Xiao G; Luo Y; Zhang H; Chen Z; Zhang Z
    BMC Genet; 2015 Oct; 16():120. PubMed ID: 26466667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of genomic prediction within and across generations in maritime pine.
    Bartholomé J; Van Heerwaarden J; Isik F; Boury C; Vidal M; Plomion C; Bouffier L
    BMC Genomics; 2016 Aug; 17(1):604. PubMed ID: 27515254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association mapping of quantitative disease resistance in a natural population of loblolly pine (Pinus taeda L.).
    Quesada T; Gopal V; Cumbie WP; Eckert AJ; Wegrzyn JL; Neale DB; Goldfarb B; Huber DA; Casella G; Davis JM
    Genetics; 2010 Oct; 186(2):677-86. PubMed ID: 20628037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic dissection of fusiform rust and pitch canker disease traits in loblolly pine.
    Kayihan GC; Huber DA; Morse AM; White TL; Davis JM
    Theor Appl Genet; 2005 Mar; 110(5):948-58. PubMed ID: 15700146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of five methods to predict genomic breeding values of dairy bulls from genome-wide SNP markers.
    Moser G; Tier B; Crump RE; Khatkar MS; Raadsma HW
    Genet Sel Evol; 2009 Dec; 41(1):56. PubMed ID: 20043835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-enabled prediction of meat and carcass traits using Bayesian regression, single-step genomic best linear unbiased prediction and blending methods in Nelore cattle.
    Lopes FB; Baldi F; Passafaro TL; Brunes LC; Costa MFO; Eifert EC; Narciso MG; Rosa GJM; Lobo RB; Magnabosco CU
    Animal; 2021 Jan; 15(1):100006. PubMed ID: 33516009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic selection in maritime pine.
    Isik F; Bartholomé J; Farjat A; Chancerel E; Raffin A; Sanchez L; Plomion C; Bouffier L
    Plant Sci; 2016 Jan; 242():108-119. PubMed ID: 26566829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association mapping of ectomycorrhizal traits in loblolly pine (Pinus taeda L.).
    Piculell BJ; José Martínez-García P; Nelson CD; Hoeksema JD
    Mol Ecol; 2019 Apr; 28(8):2088-2099. PubMed ID: 30632641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Multiple-Trait Bayesian Lasso for Genome-Enabled Analysis and Prediction of Complex Traits.
    Gianola D; Fernando RL
    Genetics; 2020 Feb; 214(2):305-331. PubMed ID: 31879318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of Bayesian and BLUP alphabets for genomic prediction: analysis, comparison and results.
    Meher PK; Rustgi S; Kumar A
    Heredity (Edinb); 2022 Jun; 128(6):519-530. PubMed ID: 35508540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NLR diversity and candidate fusiform rust resistance genes in loblolly pine.
    Ence D; Smith KE; Fan S; Gomide Neves L; Paul R; Wegrzyn J; Peter GF; Kirst M; Brawner J; Nelson CD; Davis JM
    G3 (Bethesda); 2022 Feb; 12(2):. PubMed ID: 34897455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exome genotyping, linkage disequilibrium and population structure in loblolly pine (Pinus taeda L.).
    Lu M; Krutovsky KV; Nelson CD; Koralewski TE; Byram TD; Loopstra CA
    BMC Genomics; 2016 Sep; 17(1):730. PubMed ID: 27624183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous fitting of genomic-BLUP and Bayes-C components in a genomic prediction model.
    Iheshiulor OOM; Woolliams JA; Svendsen M; Solberg T; Meuwissen THE
    Genet Sel Evol; 2017 Aug; 49(1):63. PubMed ID: 28836944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative trait loci influencing forking defects in an outbred pedigree of loblolly pine.
    Xiong JS; McKeand SE; Isik F; Wegrzyn J; Neale DB; Zeng ZB; da Costa E Silva L; Whetten RW
    BMC Genet; 2016 Oct; 17(1):138. PubMed ID: 27756221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Consensus Genetic Map for Pinus taeda and Pinus elliottii and Extent of Linkage Disequilibrium in Two Genotype-Phenotype Discovery Populations of Pinus taeda.
    Westbrook JW; Chhatre VE; Wu LS; Chamala S; Neves LG; Muñoz P; Martínez-García PJ; Neale DB; Kirst M; Mockaitis K; Nelson CD; Peter GF; Davis JM; Echt CS
    G3 (Bethesda); 2015 Jun; 5(8):1685-94. PubMed ID: 26068575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic architecture of complex traits in loblolly pine.
    De La Torre AR; Puiu D; Crepeau MW; Stevens K; Salzberg SL; Langley CH; Neale DB
    New Phytol; 2019 Mar; 221(4):1789-1801. PubMed ID: 30318590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Back to nature: ecological genomics of loblolly pine (Pinus taeda, Pinaceae).
    Eckert AJ; Bower AD; González-Martínez SC; Wegrzyn JL; Coop G; Neale DB
    Mol Ecol; 2010 Sep; 19(17):3789-805. PubMed ID: 20723060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.