These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 22271778)

  • 1. Unified modeling of gene duplication, loss, and coalescence using a locus tree.
    Rasmussen MD; Kellis M
    Genome Res; 2012 Apr; 22(4):755-65. PubMed ID: 22271778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Most parsimonious reconciliation in the presence of gene duplication, loss, and deep coalescence using labeled coalescent trees.
    Wu YC; Rasmussen MD; Bansal MS; Kellis M
    Genome Res; 2014 Mar; 24(3):475-86. PubMed ID: 24310000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient error correction algorithms for gene tree reconciliation based on duplication, duplication and loss, and deep coalescence.
    Chaudhary R; Burleigh JG; Eulenstein O
    BMC Bioinformatics; 2012 Jun; 13 Suppl 10(Suppl 10):S11. PubMed ID: 22759416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconciliation feasibility in the presence of gene duplication, loss, and coalescence with multiple individuals per species.
    Rogers J; Fishberg A; Youngs N; Wu YC
    BMC Bioinformatics; 2017 Jun; 18(1):292. PubMed ID: 28583091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inferring incomplete lineage sorting, duplications, transfers and losses with reconciliations.
    Chan YB; Ranwez V; Scornavacca C
    J Theor Biol; 2017 Nov; 432():1-13. PubMed ID: 28801222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effect of Copy Number Hemiplasy on Gene Family Evolution.
    Li Q; Chan YB; Galtier N; Scornavacca C
    Syst Biol; 2024 Jul; 73(2):355-374. PubMed ID: 38330161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Multilocus Multispecies Coalescent: A Flexible New Model of Gene Family Evolution.
    Li Q; Scornavacca C; Galtier N; Chan YB
    Syst Biol; 2021 Jun; 70(4):822-837. PubMed ID: 33169795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Incomplete Lineage Sorting On Tree-Reconciliation-Based Inference of Gene Duplication.
    Zheng Y; Zhang L
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(3):477-85. PubMed ID: 26356016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A matter of phylogenetic scale: Distinguishing incomplete lineage sorting from lateral gene transfer as the cause of gene tree discord in recent versus deep diversification histories.
    Knowles LL; Huang H; Sukumaran J; Smith SA
    Am J Bot; 2018 Mar; 105(3):376-384. PubMed ID: 29710372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From gene trees to species trees II: species tree inference by minimizing deep coalescence events.
    Zhang L
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(6):1685-91. PubMed ID: 21576759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-scale coestimation of species and gene trees.
    Boussau B; Szöllosi GJ; Duret L; Gouy M; Tannier E; Daubin V
    Genome Res; 2013 Feb; 23(2):323-30. PubMed ID: 23132911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Are the duplication cost and Robinson-Foulds distance equivalent?
    Zheng Y; Zhang L
    J Comput Biol; 2014 Aug; 21(8):578-90. PubMed ID: 24988427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Algorithms: simultaneous error-correction and rooting for gene tree reconciliation and the gene duplication problem.
    Górecki P; Eulenstein O
    BMC Bioinformatics; 2012 Jun; 13 Suppl 10(Suppl 10):S14. PubMed ID: 22759419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene tree species tree reconciliation with gene conversion.
    Hasić D; Tannier E
    J Math Biol; 2019 May; 78(6):1981-2014. PubMed ID: 30767052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Counting and sampling gene family evolutionary histories in the duplication-loss and duplication-loss-transfer models.
    Chauve C; Ponty Y; Wallner M
    J Math Biol; 2020 Apr; 80(5):1353-1388. PubMed ID: 32060618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient genome-scale phylogenetic analysis under the duplication-loss and deep coalescence cost models.
    Bansal MS; Burleigh JG; Eulenstein O
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S42. PubMed ID: 20122216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Species Tree Estimation from Genome-Wide Data with guenomu.
    de Oliveira Martins L; Posada D
    Methods Mol Biol; 2017; 1525():461-478. PubMed ID: 27896732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inferring duplications, losses, transfers and incomplete lineage sorting with nonbinary species trees.
    Stolzer M; Lai H; Xu M; Sathaye D; Vernot B; Durand D
    Bioinformatics; 2012 Sep; 28(18):i409-i415. PubMed ID: 22962460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Species Tree Inference Methods Intended to Deal with Incomplete Lineage Sorting Are Robust to the Presence of Paralogs.
    Yan Z; Smith ML; Du P; Hahn MW; Nakhleh L
    Syst Biol; 2022 Feb; 71(2):367-381. PubMed ID: 34245291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes.
    Mirkin BG; Fenner TI; Galperin MY; Koonin EV
    BMC Evol Biol; 2003 Jan; 3():2. PubMed ID: 12515582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.