These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 22271831)

  • 1. Computer-aided lesion diagnosis in automated 3-D breast ultrasound using coronal spiculation.
    Tan T; Platel B; Huisman H; Sánchez CI; Mus R; Karssemeijer N
    IEEE Trans Med Imaging; 2012 May; 31(5):1034-42. PubMed ID: 22271831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the effect of computer-aided classification of benign and malignant lesions on reader performance in automated three-dimensional breast ultrasound.
    Tan T; Platel B; Twellmann T; van Schie G; Mus R; Grivegnée A; Mann RM; Karssemeijer N
    Acad Radiol; 2013 Nov; 20(11):1381-8. PubMed ID: 24119350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer-aided detection of cancer in automated 3-D breast ultrasound.
    Tan T; Platel B; Mus R; Tabar L; Mann RM; Karssemeijer N
    IEEE Trans Med Imaging; 2013 Sep; 32(9):1698-706. PubMed ID: 23693128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer-aided diagnosis for the classification of breast masses in automated whole breast ultrasound images.
    Moon WK; Shen YW; Huang CS; Chiang LR; Chang RF
    Ultrasound Med Biol; 2011 Apr; 37(4):539-48. PubMed ID: 21420580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative analysis of breast echotexture patterns in automated breast ultrasound images.
    Chang RF; Hou YL; Lo CM; Huang CS; Chen JH; Kim WH; Chang JM; Bae MS; Moon WK
    Med Phys; 2015 Aug; 42(8):4566-78. PubMed ID: 26233185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiplanar Reconstructions of 3D Automated Breast Ultrasound Improve Lesion Differentiation by Radiologists.
    Van Zelst JC; Platel B; Karssemeijer N; Mann RM
    Acad Radiol; 2015 Dec; 22(12):1489-96. PubMed ID: 26345538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Malignant and benign breast masses on 3D US volumetric images: effect of computer-aided diagnosis on radiologist accuracy.
    Sahiner B; Chan HP; Roubidoux MA; Hadjiiski LM; Helvie MA; Paramagul C; Bailey J; Nees AV; Blane C
    Radiology; 2007 Mar; 242(3):716-24. PubMed ID: 17244717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer-aided diagnosis with textural features for breast lesions in sonograms.
    Chen DR; Huang YL; Lin SH
    Comput Med Imaging Graph; 2011 Apr; 35(3):220-6. PubMed ID: 21131178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer-Aided Diagnosis for Breast Ultrasound Using Computerized BI-RADS Features and Machine Learning Methods.
    Shan J; Alam SK; Garra B; Zhang Y; Ahmed T
    Ultrasound Med Biol; 2016 Apr; 42(4):980-8. PubMed ID: 26806441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of spiculation on ultrasound lesions.
    Huang SF; Chang RF; Chen DR; Moon WK
    IEEE Trans Med Imaging; 2004 Jan; 23(1):111-21. PubMed ID: 14719692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer-aided diagnosis based on quantitative elastographic features with supersonic shear wave imaging.
    Xiao Y; Zeng J; Niu L; Zeng Q; Wu T; Wang C; Zheng R; Zheng H
    Ultrasound Med Biol; 2014 Feb; 40(2):275-86. PubMed ID: 24268454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computerized characterization of breast masses on three-dimensional ultrasound volumes.
    Sahiner B; Chan HP; Roubidoux MA; Helvie MA; Hadjiiski LM; Ramachandran A; Paramagul C; LeCarpentier GL; Nees A; Blane C
    Med Phys; 2004 Apr; 31(4):744-54. PubMed ID: 15124991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dedicated computer-aided detection software for automated 3D breast ultrasound; an efficient tool for the radiologist in supplemental screening of women with dense breasts.
    van Zelst JCM; Tan T; Clauser P; Domingo A; Dorrius MD; Drieling D; Golatta M; Gras F; de Jong M; Pijnappel R; Rutten MJCM; Karssemeijer N; Mann RM
    Eur Radiol; 2018 Jul; 28(7):2996-3006. PubMed ID: 29417251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer-aided diagnosis using morphological features for classifying breast lesions on ultrasound.
    Huang YL; Chen DR; Jiang YR; Kuo SJ; Wu HK; Moon WK
    Ultrasound Obstet Gynecol; 2008 Sep; 32(4):565-72. PubMed ID: 18383556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multimodality computerized diagnosis of breast lesions using mammography and sonography.
    Drukker K; Horsch K; Giger ML
    Acad Radiol; 2005 Aug; 12(8):970-9. PubMed ID: 16087091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer-aided diagnosis of solid breast nodules: use of an artificial neural network based on multiple sonographic features.
    Joo S; Yang YS; Moon WK; Kim HC
    IEEE Trans Med Imaging; 2004 Oct; 23(10):1292-300. PubMed ID: 15493696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Segmentation of malignant lesions in 3D breast ultrasound using a depth-dependent model.
    Tan T; Gubern-Mérida A; Borelli C; Manniesing R; van Zelst J; Wang L; Zhang W; Platel B; Mann RM; Karssemeijer N
    Med Phys; 2016 Jul; 43(7):4074. PubMed ID: 27370126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasonic multi-feature analysis procedure for computer-aided diagnosis of solid breast lesions.
    Alam SK; Feleppa EJ; Rondeau M; Kalisz A; Garra BS
    Ultrason Imaging; 2011 Jan; 33(1):17-38. PubMed ID: 21608446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer-aided diagnosis based on speckle patterns in ultrasound images.
    Moon WK; Lo CM; Huang CS; Chen JH; Chang RF
    Ultrasound Med Biol; 2012 Jul; 38(7):1251-61. PubMed ID: 22579548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining low-, high-level and empirical domain knowledge for automated segmentation of ultrasonic breast lesions.
    Madabhushi A; Metaxas DN
    IEEE Trans Med Imaging; 2003 Feb; 22(2):155-69. PubMed ID: 12715992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.