BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 22272218)

  • 1. Development of manganese-based nanoparticles as contrast probes for magnetic resonance imaging.
    Zhen Z; Xie J
    Theranostics; 2012; 2(1):45-54. PubMed ID: 22272218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revisiting an old friend: manganese-based MRI contrast agents.
    Pan D; Caruthers SD; Senpan A; Schmieder AH; Wickline SA; Lanza GM
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2011; 3(2):162-73. PubMed ID: 20860051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gadolinium-based bimodal probes to enhance T1-Weighted magnetic resonance/optical imaging.
    Yang CT; Hattiholi A; Selvan ST; Yan SX; Fang WW; Chandrasekharan P; Koteswaraiah P; Herold CJ; Gulyás B; Aw SE; He T; Ng DCE; Padmanabhan P
    Acta Biomater; 2020 Jul; 110():15-36. PubMed ID: 32335310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paramagnetic and Superparamagnetic Inorganic Nanoparticles for T1-Weighted Magnetic Resonance Imaging.
    Zeng L; Wu D; Zou R; Chen T; Zhang J; Wu A
    Curr Med Chem; 2018; 25(25):2970-2986. PubMed ID: 28292235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manganese-based MRI contrast agents: past, present and future.
    Pan D; Schmieder AH; Wickline SA; Lanza GM
    Tetrahedron; 2011 Nov; 67(44):8431-8444. PubMed ID: 22043109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents.
    Estelrich J; Sánchez-Martín MJ; Busquets MA
    Int J Nanomedicine; 2015; 10():1727-41. PubMed ID: 25834422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manganese-loaded lipid-micellar theranostics for simultaneous drug and gene delivery to lungs.
    Howell M; Mallela J; Wang C; Ravi S; Dixit S; Garapati U; Mohapatra S
    J Control Release; 2013 Apr; 167(2):210-8. PubMed ID: 23395689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanotemplate-engineered nanoparticles containing gadolinium for magnetic resonance imaging of tumors.
    Zhu D; Lu X; Hardy PA; Leggas M; Jay M
    Invest Radiol; 2008 Feb; 43(2):129-40. PubMed ID: 18197065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of gadolinium in nanostructure for contrast enhanced-magnetic resonance imaging.
    Marasini R; Thanh Nguyen TD; Aryal S
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2020 Jan; 12(1):e1580. PubMed ID: 31486295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and evaluation of tumor-targeted positive MRI contrast agent based on ultrasmall MnO nanoparticles.
    Huang H; Yue T; Xu K; Golzarian J; Yu J; Huang J
    Colloids Surf B Biointerfaces; 2015 Jul; 131():148-54. PubMed ID: 25982318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activatable 19F MRI nanoparticle probes for the detection of reducing environments.
    Nakamura T; Matsushita H; Sugihara F; Yoshioka Y; Mizukami S; Kikuchi K
    Angew Chem Int Ed Engl; 2015 Jan; 54(3):1007-10. PubMed ID: 25413833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-property relationships in manganese oxide--mesoporous silica nanoparticles used for T1-weighted MRI and simultaneous anti-cancer drug delivery.
    Chen Y; Chen H; Zhang S; Chen F; Sun S; He Q; Ma M; Wang X; Wu H; Zhang L; Zhang L; Shi J
    Biomaterials; 2012 Mar; 33(7):2388-98. PubMed ID: 22177841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatible nanotemplate-engineered nanoparticles containing gadolinium: stability and relaxivity of a potential MRI contrast agent.
    Zhu D; White RD; Hardy PA; Weerapreeyakul N; Sutthanut K; Jay M
    J Nanosci Nanotechnol; 2006 Apr; 6(4):996-1003. PubMed ID: 16736756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrinsically Zirconium-89-Labeled Manganese Oxide Nanoparticles for
    Zhan Y; Ehlerding EB; Shi S; Graves SA; Goel S; Engle JW; Liang J; Cai W
    J Biomed Nanotechnol; 2018 May; 14(5):900-909. PubMed ID: 29883560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasmall superparamagnetic iron oxides (USPIOs): a future alternative magnetic resonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF)?
    Neuwelt EA; Hamilton BE; Varallyay CG; Rooney WR; Edelman RD; Jacobs PM; Watnick SG
    Kidney Int; 2009 Mar; 75(5):465-74. PubMed ID: 18843256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of Gd(III) porphyrin-conjugated chitosan nanoparticles as contrast agents for magnetic resonance imaging.
    Jahanbin T; Sauriat-Dorizon H; Spearman P; Benderbous S; Korri-Youssoufi H
    Mater Sci Eng C Mater Biol Appl; 2015; 52():325-32. PubMed ID: 25953574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gadolinium-conjugated PLA-PEG nanoparticles as liver targeted molecular MRI contrast agent.
    Chen Z; Yu D; Liu C; Yang X; Zhang N; Ma C; Song J; Lu Z
    J Drug Target; 2011 Sep; 19(8):657-65. PubMed ID: 21091273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted Molecular Iron Oxide Contrast Agents for Imaging Atherosclerotic Plaque.
    Evans RJ; Lavin B; Phinikaridou A; Chooi KY; Mohri Z; Wong E; Boyle JJ; Krams R; Botnar R; Long NJ
    Nanotheranostics; 2020; 4(4):184-194. PubMed ID: 32637296
    [No Abstract]   [Full Text] [Related]  

  • 19. Novel Gd nanoparticles enhance vascular contrast for high-resolution magnetic resonance imaging.
    Bui T; Stevenson J; Hoekman J; Zhang S; Maravilla K; Ho RJ
    PLoS One; 2010 Sep; 5(9):. PubMed ID: 20927340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gd-hydroxypyridinone (HOPO)-based high-relaxivity magnetic resonance imaging (MRI) contrast agents.
    Datta A; Raymond KN
    Acc Chem Res; 2009 Jul; 42(7):938-47. PubMed ID: 19505089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.