These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 22272245)

  • 1. Kinesin light chain 1 suppression impairs human embryonic stem cell neural differentiation and amyloid precursor protein metabolism.
    Killian RL; Flippin JD; Herrera CM; Almenar-Queralt A; Goldstein LS
    PLoS One; 2012; 7(1):e29755. PubMed ID: 22272245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soluble Conformers of Aβ and Tau Alter Selective Proteins Governing Axonal Transport.
    Sherman MA; LaCroix M; Amar F; Larson ME; Forster C; Aguzzi A; Bennett DA; Ramsden M; Lesné SE
    J Neurosci; 2016 Sep; 36(37):9647-58. PubMed ID: 27629715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinesin light chain-1 serine-460 phosphorylation is altered in Alzheimer's disease and regulates axonal transport and processing of the amyloid precursor protein.
    Mórotz GM; Glennon EB; Greig J; Lau DHW; Bhembre N; Mattedi F; Muschalik N; Noble W; Vagnoni A; Miller CCJ
    Acta Neuropathol Commun; 2019 Dec; 7(1):200. PubMed ID: 31806024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Axonal stress kinase activation and tau misbehavior induced by kinesin-1 transport defects.
    Falzone TL; Stokin GB; Lillo C; Rodrigues EM; Westerman EL; Williams DS; Goldstein LS
    J Neurosci; 2009 May; 29(18):5758-67. PubMed ID: 19420244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subpixel colocalization reveals amyloid precursor protein-dependent kinesin-1 and dynein association with axonal vesicles.
    Szpankowski L; Encalada SE; Goldstein LS
    Proc Natl Acad Sci U S A; 2012 May; 109(22):8582-7. PubMed ID: 22582169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Normal levels of KIF5 but reduced KLC1 levels in both Alzheimer disease and Alzheimer disease in Down syndrome: evidence suggesting defects in anterograde transport.
    Chen XQ; Das U; Park G; Mobley WC
    Alzheimers Res Ther; 2021 Mar; 13(1):59. PubMed ID: 33691783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-renewal and differentiation capabilities are variable between human embryonic stem cell lines I3, I6 and BG01V.
    Tavakoli T; Xu X; Derby E; Serebryakova Y; Reid Y; Rao MS; Mattson MP; Ma W
    BMC Cell Biol; 2009 Jun; 10():44. PubMed ID: 19500347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation of KLC1 modifies interaction with JIP1 and abolishes the enhanced fast velocity of APP transport by kinesin-1.
    Chiba K; Chien KY; Sobu Y; Hata S; Kato S; Nakaya T; Okada Y; Nairn AC; Kinjo M; Taru H; Wang R; Suzuki T
    Mol Biol Cell; 2017 Dec; 28(26):3857-3869. PubMed ID: 29093025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tau Isoforms Imbalance Impairs the Axonal Transport of the Amyloid Precursor Protein in Human Neurons.
    Lacovich V; Espindola SL; Alloatti M; Pozo Devoto V; Cromberg LE; Čarná ME; Forte G; Gallo JM; Bruno L; Stokin GB; Avale ME; Falzone TL
    J Neurosci; 2017 Jan; 37(1):58-69. PubMed ID: 28053030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurons derived from sporadic Alzheimer's disease iPSCs reveal elevated TAU hyperphosphorylation, increased amyloid levels, and GSK3B activation.
    Ochalek A; Mihalik B; Avci HX; Chandrasekaran A; Téglási A; Bock I; Giudice ML; Táncos Z; Molnár K; László L; Nielsen JE; Holst B; Freude K; Hyttel P; Kobolák J; Dinnyés A
    Alzheimers Res Ther; 2017 Dec; 9(1):90. PubMed ID: 29191219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Markers of pluripotency and differentiation in human neural precursor cells derived from embryonic stem cells and CNS tissue.
    Sundberg M; Andersson PH; Åkesson E; Odeberg J; Holmberg L; Inzunza J; Falci S; Öhman J; Suuronen R; Skottman H; Lehtimäki K; Hovatta O; Narkilahti S; Sundström E
    Cell Transplant; 2011; 20(2):177-91. PubMed ID: 20875224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative analysis of APP axonal transport in neurons: role of JIP1 in enhanced APP anterograde transport.
    Chiba K; Araseki M; Nozawa K; Furukori K; Araki Y; Matsushima T; Nakaya T; Hata S; Saito Y; Uchida S; Okada Y; Nairn AC; Davis RJ; Yamamoto T; Kinjo M; Taru H; Suzuki T
    Mol Biol Cell; 2014 Nov; 25(22):3569-80. PubMed ID: 25165140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I.
    Kamal A; Stokin GB; Yang Z; Xia CH; Goldstein LS
    Neuron; 2000 Nov; 28(2):449-59. PubMed ID: 11144355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abnormal interaction between the mitochondrial fission protein Drp1 and hyperphosphorylated tau in Alzheimer's disease neurons: implications for mitochondrial dysfunction and neuronal damage.
    Manczak M; Reddy PH
    Hum Mol Genet; 2012 Jun; 21(11):2538-47. PubMed ID: 22367970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential processing of amyloid-beta precursor protein directs human embryonic stem cell proliferation and differentiation into neuronal precursor cells.
    Porayette P; Gallego MJ; Kaltcheva MM; Bowen RL; Vadakkadath Meethal S; Atwood CS
    J Biol Chem; 2009 Aug; 284(35):23806-17. PubMed ID: 19542221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome analysis of distinct mouse strains reveals kinesin light chain-1 splicing as an amyloid-β accumulation modifier.
    Morihara T; Hayashi N; Yokokoji M; Akatsu H; Silverman MA; Kimura N; Sato M; Saito Y; Suzuki T; Yanagida K; Kodama TS; Tanaka T; Okochi M; Tagami S; Kazui H; Kudo T; Hashimoto R; Itoh N; Nishitomi K; Yamaguchi-Kabata Y; Tsunoda T; Takamura H; Katayama T; Kimura R; Kamino K; Hashizume Y; Takeda M
    Proc Natl Acad Sci U S A; 2014 Feb; 111(7):2638-43. PubMed ID: 24497505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Levels of kinesin light chain and dynein intermediate chain are reduced in the frontal cortex in Alzheimer's disease: implications for axoplasmic transport.
    Morel M; Héraud C; Nicaise C; Suain V; Brion JP
    Acta Neuropathol; 2012 Jan; 123(1):71-84. PubMed ID: 22094641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-surface marker signatures for the isolation of neural stem cells, glia and neurons derived from human pluripotent stem cells.
    Yuan SH; Martin J; Elia J; Flippin J; Paramban RI; Hefferan MP; Vidal JG; Mu Y; Killian RL; Israel MA; Emre N; Marsala S; Marsala M; Gage FH; Goldstein LS; Carson CT
    PLoS One; 2011 Mar; 6(3):e17540. PubMed ID: 21407814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of tripotent neural progenitor cells from rat embryonic stem cells.
    Wang Z; Sheng C; Li T; Teng F; Sang L; Cao F; Wang Z; Zhu W; Li W; Zhao X; Liu Z; Wang L; Zhou Q
    J Genet Genomics; 2012 Dec; 39(12):643-51. PubMed ID: 23273768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A human stem cell model of early Alzheimer's disease pathology in Down syndrome.
    Shi Y; Kirwan P; Smith J; MacLean G; Orkin SH; Livesey FJ
    Sci Transl Med; 2012 Mar; 4(124):124ra29. PubMed ID: 22344463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.