These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Evidence that a single monolayer tubulin-GTP cap is both necessary and sufficient to stabilize microtubules. Caplow M; Shanks J Mol Biol Cell; 1996 Apr; 7(4):663-75. PubMed ID: 8730106 [TBL] [Abstract][Full Text] [Related]
8. Structural changes at microtubule ends accompanying GTP hydrolysis: information from a slowly hydrolyzable analogue of GTP, guanylyl (alpha,beta)methylenediphosphonate. Müller-Reichert T; Chrétien D; Severin F; Hyman AA Proc Natl Acad Sci U S A; 1998 Mar; 95(7):3661-6. PubMed ID: 9520422 [TBL] [Abstract][Full Text] [Related]
9. Structural changes accompanying GTP hydrolysis in microtubules: information from a slowly hydrolyzable analogue guanylyl-(alpha,beta)-methylene-diphosphonate. Hyman AA; Chrétien D; Arnal I; Wade RH J Cell Biol; 1995 Jan; 128(1-2):117-25. PubMed ID: 7822409 [TBL] [Abstract][Full Text] [Related]
10. Conformational changes in tubulin in GMPCPP and GDP-taxol microtubules observed by cryoelectron microscopy. Yajima H; Ogura T; Nitta R; Okada Y; Sato C; Hirokawa N J Cell Biol; 2012 Aug; 198(3):315-22. PubMed ID: 22851320 [TBL] [Abstract][Full Text] [Related]
11. Kinetochores distinguish GTP from GDP forms of the microtubule lattice. Severin FF; Sorger PK; Hyman AA Nature; 1997 Aug; 388(6645):888-91. PubMed ID: 9278051 [TBL] [Abstract][Full Text] [Related]
12. The free energy for hydrolysis of a microtubule-bound nucleotide triphosphate is near zero: all of the free energy for hydrolysis is stored in the microtubule lattice. Caplow M; Ruhlen RL; Shanks J J Cell Biol; 1994 Nov; 127(3):779-88. PubMed ID: 7962059 [TBL] [Abstract][Full Text] [Related]
13. Microtubule assembly: lattice GTP to the rescue. Cassimeris L Curr Biol; 2009 Feb; 19(4):R174-6. PubMed ID: 19243696 [TBL] [Abstract][Full Text] [Related]
14. Mechanism of tubulin assembly: guanosine 5'-triphosphate hydrolysis decreases the rate of microtubule depolymerization. Bonne D; Pantaloni D Biochemistry; 1982 Mar; 21(5):1075-81. PubMed ID: 7074050 [TBL] [Abstract][Full Text] [Related]
16. Microtubule elongation and guanosine 5'-triphosphate hydrolysis. Role of guanine nucleotides in microtubule dynamics. Carlier MF; Didry D; Pantaloni D Biochemistry; 1987 Jul; 26(14):4428-37. PubMed ID: 3663597 [TBL] [Abstract][Full Text] [Related]
17. GDP-to-GTP exchange on the microtubule end can contribute to the frequency of catastrophe. Piedra FA; Kim T; Garza ES; Geyer EA; Burns A; Ye X; Rice LM Mol Biol Cell; 2016 Nov; 27(22):3515-3525. PubMed ID: 27146111 [TBL] [Abstract][Full Text] [Related]
18. Equilibrium studies of a fluorescent paclitaxel derivative binding to microtubules. Li Y; Edsall R; Jagtap PG; Kingston DG; Bane S Biochemistry; 2000 Jan; 39(3):616-23. PubMed ID: 10642187 [TBL] [Abstract][Full Text] [Related]
19. Assembly of microtubules from tubulin bearing the nonhydrolyzable guanosine triphosphate analogue GMPPCP [guanylyl 5'-(beta, gamma-methylenediphosphonate)]: variability of growth rates and the hydrolysis of GTP. Dye RB; Williams RC Biochemistry; 1996 Nov; 35(45):14331-9. PubMed ID: 8916920 [TBL] [Abstract][Full Text] [Related]
20. Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly. Wang HW; Nogales E Nature; 2005 Jun; 435(7044):911-5. PubMed ID: 15959508 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]