BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 22273472)

  • 1. Hofmann-type rearrangement of imides by in situ generation of imide-hypervalent iodines(III) from iodoarenes.
    Moriyama K; Ishida K; Togo H
    Org Lett; 2012 Feb; 14(3):946-9. PubMed ID: 22273472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. (Tosylimino)phenyl-λ3-iodane as a reagent for the synthesis of methyl carbamates via Hofmann rearrangement of aromatic and aliphatic carboxamides.
    Yoshimura A; Luedtke MW; Zhdankin VV
    J Org Chem; 2012 Feb; 77(4):2087-91. PubMed ID: 22304475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A catalytic version of hypervalent aryl-λ3-iodane-induced Hofmann rearrangement of primary carboxamides: iodobenzene as an organocatalyst and m-chloroperbenzoic acid as a terminal oxidant.
    Miyamoto K; Sakai Y; Goda S; Ochiai M
    Chem Commun (Camb); 2012 Jan; 48(7):982-4. PubMed ID: 22159446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypervalent iodine catalyzed Hofmann rearrangement of carboxamides using oxone as terminal oxidant.
    Yoshimura A; Middleton KR; Luedtke MW; Zhu C; Zhdankin VV
    J Org Chem; 2012 Dec; 77(24):11399-404. PubMed ID: 23176018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of catalytic alkali metal bromide on Hofmann-type rearrangement of imides.
    Moriyama K; Ishida K; Togo H
    Chem Commun (Camb); 2012 Sep; 48(68):8574-6. PubMed ID: 22806230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hofmann rearrangement of carboxamides mediated by hypervalent iodine species generated in situ from iodobenzene and oxone: reaction scope and limitations.
    Zagulyaeva AA; Banek CT; Yusubov MS; Zhdankin VV
    Org Lett; 2010 Oct; 12(20):4644-7. PubMed ID: 20843092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypervalent Iodine Reagent-Promoted Hofmann-Type Rearrangement/Carboxylation of Primary Amides.
    Wang X; Yang P; Hu B; Zhang Q; Li D
    J Org Chem; 2021 Feb; 86(3):2820-2826. PubMed ID: 33439647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regioselective C(sp2)-H dual functionalization of indoles using hypervalent iodine(III): bromo-amination via 1,3-migration of imides on indolyl(phenyl)iodonium imides.
    Moriyama K; Ishida K; Togo H
    Chem Commun (Camb); 2015 Feb; 51(12):2273-6. PubMed ID: 25556519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on the reactive transient α-λ3-iodanyl-acetophenone complex in the iodine(III)/PhI(I) catalytic cycle of iodobenzene-catalyzed α-acetoxylation reaction of acetophenone by electrospray ionization tandem mass spectrometry.
    Wang HY; Zhou J; Guo YL
    Rapid Commun Mass Spectrom; 2012 Mar; 26(6):616-20. PubMed ID: 22328214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iodine(III)-catalyzed rearrangements of imides: a versatile route to α,α-dialkylated α-hydroxy carboxylamides.
    Ulmer A; Stodulski M; Kohlhepp SV; Patzelt C; Pöthig A; Bettray W; Gulder T
    Chemistry; 2015 Jan; 21(4):1444-8. PubMed ID: 25470246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rearrangements Induced by Hypervalent Iodine.
    Maertens G; Canesi S
    Top Curr Chem; 2016; 373():223-41. PubMed ID: 26287122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypervalent iodine reagents as a new entrance to organocatalysts.
    Dohi T; Kita Y
    Chem Commun (Camb); 2009 Apr; (16):2073-85. PubMed ID: 19360157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of Heteroaromatic (Aryl)iodonium Imides as I-N Bond-Containing Hypervalent Iodine.
    Ishida K; Togo H; Moriyama K
    Chem Asian J; 2016 Dec; 11(24):3583-3588. PubMed ID: 27879062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stoichiometric and catalytic oxidations with hypervalent organo-lambda3-iodanes.
    Ochiai M
    Chem Rec; 2007; 7(1):12-23. PubMed ID: 17304588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypervalent iodine(III)-mediated oxidation of aldoximes to N-acetoxy or N-hydroxy amides.
    Ghosh H; Patel BK
    Org Biomol Chem; 2010 Jan; 8(2):384-90. PubMed ID: 20066274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of Polysubstituted Iodoarenes Enabled by Iterative Iodine-Directed para and ortho C-H Functionalization.
    Wu Y; Bouvet S; Izquierdo S; Shafir A
    Angew Chem Int Ed Engl; 2019 Feb; 58(9):2617-2621. PubMed ID: 30496639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypervalent iodine-mediated aziridination of alkenes: mechanistic insights and requirements for catalysis.
    Richardson RD; Desaize M; Wirth T
    Chemistry; 2007; 13(23):6745-54. PubMed ID: 17514676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Difluoro-lambda3-bromane-induced Hofmann rearrangement of sulfonamides: synthesis of sulfamoyl fluorides.
    Ochiai M; Okada T; Tada N; Yoshimura A; Miyamoto K; Shiro M
    J Am Chem Soc; 2009 Jun; 131(24):8392-3. PubMed ID: 19485369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iodane-Guided ortho C-H Allylation.
    Chen WW; Cunillera A; Chen D; Lethu S; López de Moragas A; Zhu J; Solà M; Cuenca AB; Shafir A
    Angew Chem Int Ed Engl; 2020 Nov; 59(45):20201-20207. PubMed ID: 32721056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sigmatropic Rearrangements of Hypervalent-Iodine-Tethered Intermediates for the Synthesis of Biaryls.
    Hori M; Guo JD; Yanagi T; Nogi K; Sasamori T; Yorimitsu H
    Angew Chem Int Ed Engl; 2018 Apr; 57(17):4663-4667. PubMed ID: 29451348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.