These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 22273592)

  • 41. Clear castable polyurethane elastomer for fabrication of microfluidic devices.
    Domansky K; Leslie DC; McKinney J; Fraser JP; Sliz JD; Hamkins-Indik T; Hamilton GA; Bahinski A; Ingber DE
    Lab Chip; 2013 Oct; 13(19):3956-64. PubMed ID: 23954953
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Protein-resistant and fibrinolytic polyurethane surfaces.
    Wu Z; Chen H; Liu X; Brash JL
    Macromol Biosci; 2012 Jan; 12(1):126-31. PubMed ID: 21998081
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A surface-modified sperm sorting device with long-term stability.
    Wu JM; Chung Y; Belford KJ; Smith GD; Takayama S; Lahann J
    Biomed Microdevices; 2006 Jun; 8(2):99-107. PubMed ID: 16688569
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Surface modification of glycidyl-containing poly(methyl methacrylate) microchips using surface-initiated atom-transfer radical polymerization.
    Sun X; Liu J; Lee ML
    Anal Chem; 2008 Feb; 80(3):856-63. PubMed ID: 18179249
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hard top soft bottom microfluidic devices for cell culture and chemical analysis.
    Mehta G; Lee J; Cha W; Tung YC; Linderman JJ; Takayama S
    Anal Chem; 2009 May; 81(10):3714-22. PubMed ID: 19382754
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biological responses to polyethylene oxide modified polyethylene terephthalate surfaces.
    Desai NP; Hubbell JA
    J Biomed Mater Res; 1991 Jul; 25(7):829-43. PubMed ID: 1833405
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Protein adsorption and platelet adhesion onto ion-containing polyurethanes.
    Alibeik S; Sheardown H; Rizkalla AS; Mequanint K
    J Biomater Sci Polym Ed; 2007; 18(9):1195-210. PubMed ID: 17931508
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fabrication of biofunctionalized microfluidic structures by low-temperature wax bonding.
    Díaz-González M; Baldi A
    Anal Chem; 2012 Sep; 84(18):7838-44. PubMed ID: 22905798
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Negative cilia concept for thromboresistance: synergistic effect of PEO and sulfonate groups grafted onto polyurethanes.
    Han DK; Jeong SY; Kim YH; Min BG; Cho HI
    J Biomed Mater Res; 1991 May; 25(5):561-75. PubMed ID: 1869574
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Detection of nisin and fibrinogen adsorption on poly(ethylene oxide) coated polyurethane surfaces by time-of-flight secondary ion mass spectrometry (TOF-SIMS).
    Schilke KF; McGuire J
    J Colloid Interface Sci; 2011 Jun; 358(1):14-24. PubMed ID: 21440897
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The use of polyurethane as an elastomer in thermoplastic microfluidic devices and the study of its creep properties.
    Gu P; Nishida T; Fan ZH
    Electrophoresis; 2014 Feb; 35(2-3):289-97. PubMed ID: 23868507
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Interactions of Apolipoproteins AI, AII, B and HDL, LDL, VLDL with Polyurethane and Polyurethane-PEO Surfaces.
    Cornelius RM; Macri J; Cornelius KM; Brash JL
    Langmuir; 2015 Nov; 31(44):12087-95. PubMed ID: 26513526
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite.
    Kim J; Surapaneni R; Gale BK
    Lab Chip; 2009 May; 9(9):1290-3. PubMed ID: 19370251
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fabrication of reversibly adhesive fluidic devices using magnetism.
    Rafat M; Raad DR; Rowat AC; Auguste DT
    Lab Chip; 2009 Oct; 9(20):3016-9. PubMed ID: 19789760
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Blood compatibility of PEO grafted polyurethane and HEMA/styrene block copolymer surfaces.
    Nojiri C; Okano T; Jacobs HA; Park KD; Mohammad SF; Olsen DB; Kim SW
    J Biomed Mater Res; 1990 Sep; 24(9):1151-71. PubMed ID: 2211743
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vivo biostability of polyether polyurethanes with polyethylene oxide surface-modifying end groups; resistance to biologic oxidation and stress cracking.
    Ebert M; Ward B; Anderson J; McVenes R; Stokes K
    J Biomed Mater Res A; 2005 Oct; 75(1):175-84. PubMed ID: 16041797
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Programmable microfluidic patterning of protein gradients on hydrogels.
    Allazetta S; Cosson S; Lutolf MP
    Chem Commun (Camb); 2011 Jan; 47(1):191-3. PubMed ID: 20830358
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Protein adsorption and cell adhesion on polyurethane/Pluronic surface with lotus leaf-like topography.
    Zheng J; Song W; Huang H; Chen H
    Colloids Surf B Biointerfaces; 2010 Jun; 77(2):234-9. PubMed ID: 20172699
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Non-plasma bonding of PDMS for inexpensive fabrication of microfluidic devices.
    Harris J; Lee H; Vahidi B; Tu C; Cribbs D; Cotman C; Jeon NL
    J Vis Exp; 2007; (9):410. PubMed ID: 18989450
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lysine-poly(2-hydroxyethyl methacrylate) modified polyurethane surface with high lysine density and fibrinolytic activity.
    Li D; Chen H; Wang S; Wu Z; Brash JL
    Acta Biomater; 2011 Mar; 7(3):954-8. PubMed ID: 20977952
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.