BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 22273723)

  • 1. Photoreceptor and post-photoreceptoral contributions to photopic ERG a-wave in rhodopsin P347L transgenic rabbits.
    Hirota R; Kondo M; Ueno S; Sakai T; Koyasu T; Terasaki H
    Invest Ophthalmol Vis Sci; 2012 Mar; 53(3):1467-72. PubMed ID: 22273723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of ON-bipolar cell responses of cone electroretinograms in rabbits with the Pro347Leu rhodopsin mutation.
    Nishimura T; Machida S; Kondo M; Terasaki H; Yokoyama D; Kurosaka D
    Invest Ophthalmol Vis Sci; 2011 Sep; 52(10):7610-7. PubMed ID: 21873670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions of Second- and Third-Order Retinal Neurons to Cone Electroretinograms After Loss of Rod Function in Rhodopsin P347L Transgenic Rabbits.
    Kominami T; Ueno S; Okado S; Nakanishi A; Kondo M; Terasaki H
    Invest Ophthalmol Vis Sci; 2017 Mar; 58(3):1417-1424. PubMed ID: 28253405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Focal cone ERGs of rhodopsin Pro347Leu transgenic rabbits.
    Ueno S; Koyasu T; Kominami T; Sakai T; Kondo M; Yasuda S; Terasaki H
    Vision Res; 2013 Oct; 91():118-23. PubMed ID: 23973440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supernormal ERG oscillatory potentials in transgenic rabbit with rhodopsin P347L mutation and retinal degeneration.
    Sakai T; Kondo M; Ueno S; Koyasu T; Komeima K; Terasaki H
    Invest Ophthalmol Vis Sci; 2009 Sep; 50(9):4402-9. PubMed ID: 19407007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcorneal electrical stimulation promotes survival of photoreceptors and improves retinal function in rhodopsin P347L transgenic rabbits.
    Morimoto T; Kanda H; Kondo M; Terasaki H; Nishida K; Fujikado T
    Invest Ophthalmol Vis Sci; 2012 Jun; 53(7):4254-61. PubMed ID: 22599580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-photoreceptoral activity dominates primate photopic 32-Hz ERG for sine-, square-, and pulsed stimuli.
    Kondo M; Sieving PA
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2500-7. PubMed ID: 12091456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Animal models of human retinal and optic nerve diseases analysed using electroretinography].
    Kondo M
    Nippon Ganka Gakkai Zasshi; 2010 Mar; 114(3):248-78, discussion 279. PubMed ID: 20387538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A proximal retinal component in the primate photopic ERG a-wave.
    Bush RA; Sieving PA
    Invest Ophthalmol Vis Sci; 1994 Feb; 35(2):635-45. PubMed ID: 8113014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Primate photopic sine-wave flicker ERG: vector modeling analysis of component origins using glutamate analogs.
    Kondo M; Sieving PA
    Invest Ophthalmol Vis Sci; 2001 Jan; 42(1):305-12. PubMed ID: 11133883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional and morphological study of retinal photoreceptor cell degeneration in transgenic rabbits with a Pro347Leu rhodopsin mutation.
    Asakawa K; Ishikawa H; Uga S; Mashimo K; Shimizu K; Kondo M; Terasaki H
    Jpn J Ophthalmol; 2015 Sep; 59(5):353-63. PubMed ID: 26245743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacological dissection of multifocal electroretinograms of rabbits with Pro347Leu rhodopsin mutation.
    Yokoyama D; Machida S; Kondo M; Terasaki H; Nishimura T; Kurosaka D
    Jpn J Ophthalmol; 2010 Sep; 54(5):458-66. PubMed ID: 21052910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced cone dysfunction in rats homozygous for the P23H rhodopsin mutation.
    Pinilla I; Lund RD; Sauvé Y
    Neurosci Lett; 2005 Jul 1-8; 382(1-2):16-21. PubMed ID: 15911114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Luminance dependence of neural components that underlies the primate photopic electroretinogram.
    Ueno S; Kondo M; Niwa Y; Terasaki H; Miyake Y
    Invest Ophthalmol Vis Sci; 2004 Mar; 45(3):1033-40. PubMed ID: 14985327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Digoxin-induced reversible dysfunction of the cone photoreceptors in monkeys.
    Kinoshita J; Iwata N; Kimotsuki T; Yasuda M
    Invest Ophthalmol Vis Sci; 2014 Feb; 55(2):881-92. PubMed ID: 24436189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional changes in rod and cone pathways after photoreceptor loss in light-damaged rats.
    Takahashi T; Machida S; Masuda T; Mukaida Y; Tazawa Y
    Curr Eye Res; 2005 Aug; 30(8):703-13. PubMed ID: 16109651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biphasic photoreceptor degeneration induced by light in a T17M rhodopsin mouse model of cone bystander damage.
    Krebs MP; White DA; Kaushal S
    Invest Ophthalmol Vis Sci; 2009 Jun; 50(6):2956-65. PubMed ID: 19136713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Course of loss of photoreceptor function and progressive Müller cell gliosis in rhodopsin P347L transgenic rabbits.
    Ueno S; Kominami T; Okado S; Inooka D; Kondo M; Terasaki H
    Exp Eye Res; 2019 Jul; 184():192-200. PubMed ID: 31029790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of glutamate analogues and inhibitory neurotransmitters on the electroretinograms elicited by random sequence stimuli in rabbits.
    Horiguchi M; Suzuki S; Kondo M; Tanikawa A; Miyake Y
    Invest Ophthalmol Vis Sci; 1998 Oct; 39(11):2171-6. PubMed ID: 9761298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The contribution of human cone photoreceptors to the photopic flicker electroretinogram.
    Verma R; Pianta MJ
    J Vis; 2009 Mar; 9(3):9.1-12. PubMed ID: 19757948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.