These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 222739)
1. Microbial oxidation of gaseous hydrocarbons. II. Hydroxylation of alkanes and epoxidation of alkenes by cell-free particulate fractions of methane-utilizing bacteria. Patel RN; Hou CT; Laskin AI; Felix A; Derelanko P J Bacteriol; 1979 Aug; 139(2):675-9. PubMed ID: 222739 [TBL] [Abstract][Full Text] [Related]
2. Microbial oxidation of gaseous hydrocarbons: epoxidation of C2 to C4 n-alkenes by methylotrophic bacteria. Hou CT; Patel R; Laskin AI; Barnabe N Appl Environ Microbiol; 1979 Jul; 38(1):127-34. PubMed ID: 39502 [TBL] [Abstract][Full Text] [Related]
3. Microbial oxidation of gaseous hydrocarbons: production of alcohols and methyl ketones from their corresponding n-alkanes by methylotrophic bacteria. Hou CT; Patel RN; Laski AI; Marczak I; Barnabe N Can J Microbiol; 1981 Jan; 27(1):107-15. PubMed ID: 6783282 [TBL] [Abstract][Full Text] [Related]
4. Microbial Oxidation of Gaseous Hydrocarbons: Production of Secondary Alcohols from Corresponding n-Alkanes by Methane-Utilizing Bacteria. Patel RN; Hou CT; Laskin AI; Felix A; Derelanko P Appl Environ Microbiol; 1980 Apr; 39(4):720-6. PubMed ID: 16345537 [TBL] [Abstract][Full Text] [Related]
5. Microbial Oxidation of Hydrocarbons: Properties of a Soluble Methane Monooxygenase from a Facultative Methane-Utilizing Organism, Methylobacterium sp. Strain CRL-26. Patel RN; Hou CT; Laskin AI; Felix A Appl Environ Microbiol; 1982 Nov; 44(5):1130-7. PubMed ID: 16346133 [TBL] [Abstract][Full Text] [Related]
6. Hydroxylation of methane through component interactions in soluble methane monooxygenases. Lee SJ J Microbiol; 2016 Apr; 54(4):277-82. PubMed ID: 27033202 [TBL] [Abstract][Full Text] [Related]
7. Steady-state kinetic analysis of soluble methane mono-oxygenase from Methylococcus capsulatus (Bath). Green J; Dalton H Biochem J; 1986 May; 236(1):155-62. PubMed ID: 3098230 [TBL] [Abstract][Full Text] [Related]
8. Probing the hydrophobic pocket of the active site in the particulate methane monooxygenase (pMMO) from Methylococcus capsulatus (Bath) by variable stereoselective alkane hydroxylation and olefin epoxidation. Ng KY; Tu LC; Wang YS; Chan SI; Yu SS Chembiochem; 2008 May; 9(7):1116-23. PubMed ID: 18383583 [TBL] [Abstract][Full Text] [Related]
9. Invalidity of the acetylene reduction assay in alkane-utilizing, nitrogen-fixing bacteria. De Bont JA; Mulder EG Appl Environ Microbiol; 1976 May; 31(5):640-7. PubMed ID: 818955 [TBL] [Abstract][Full Text] [Related]
10. Cometabolic degradation of chlorinated alkenes by alkene monooxygenase in a propylene-grown Xanthobacter strain. Ensign SA; Hyman MR; Arp DJ Appl Environ Microbiol; 1992 Sep; 58(9):3038-46. PubMed ID: 1444418 [TBL] [Abstract][Full Text] [Related]
11. Oxidation of deuterated compounds by high specific activity methane monooxygenase from Methylosinus trichosporium. Mechanistic implications. Rataj MJ; Kauth JE; Donnelly MI J Biol Chem; 1991 Oct; 266(28):18684-90. PubMed ID: 1917992 [TBL] [Abstract][Full Text] [Related]
13. Methanotrophs, Methylosinus trichosporium OB3b, sMMO, and their application to bioremediation. Sullivan JP; Dickinson D; Chase HA Crit Rev Microbiol; 1998; 24(4):335-73. PubMed ID: 9887367 [TBL] [Abstract][Full Text] [Related]
14. SmoXYB1C1Z of Mycobacterium sp. strain NBB4: a soluble methane monooxygenase (sMMO)-like enzyme, active on C2 to C4 alkanes and alkenes. Martin KE; Ozsvar J; Coleman NV Appl Environ Microbiol; 2014 Sep; 80(18):5801-6. PubMed ID: 25015887 [TBL] [Abstract][Full Text] [Related]
15. [Research progresses of methanotrophs and methane monooxygenases]. Han B; Su T; Li X; Xing X Sheng Wu Gong Cheng Xue Bao; 2008 Sep; 24(9):1511-9. PubMed ID: 19160830 [TBL] [Abstract][Full Text] [Related]
17. Microbial oxidation of methane and methanol: isolation of methane-utilizing bacteria and characterization of a facultative methane-utilizing isolate. Patel RN; Hou CT; Felix A J Bacteriol; 1978 Oct; 136(1):352-8. PubMed ID: 101517 [TBL] [Abstract][Full Text] [Related]
18. Oxidation of C1 Compounds by Particulate fractions from Methylococcus capsulatus: distribution and properties of methane-dependent reduced nicotinamide adenine dinucleotide oxidase (methane hydroxylase). Ribbons DW J Bacteriol; 1975 Jun; 122(3):1351-63. PubMed ID: 238946 [TBL] [Abstract][Full Text] [Related]
19. Substrate specificity of soluble methane monooxygenase. Mechanistic implications. Green J; Dalton H J Biol Chem; 1989 Oct; 264(30):17698-703. PubMed ID: 2808342 [TBL] [Abstract][Full Text] [Related]
20. The soluble methane mono-oxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds. Colby J; Stirling DI; Dalton H Biochem J; 1977 Aug; 165(2):395-402. PubMed ID: 411486 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]