These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 22273985)

  • 21. A passive MEMS drug delivery pump for treatment of ocular diseases.
    Lo R; Li PY; Saati S; Agrawal RN; Humayun MS; Meng E
    Biomed Microdevices; 2009 Oct; 11(5):959-70. PubMed ID: 19396548
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design of an implantable active microport system for patient specific drug release.
    Geipel A; Goldschmidtboeing F; Jantscheff P; Esser N; Massing U; Woias P
    Biomed Microdevices; 2008 Aug; 10(4):469-78. PubMed ID: 18483865
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Performance-testing Platform for a Conduction Micropump with an FR-4 Copper-clad Electrode Plate.
    Feng J; Wan Z; Feng C; Wen W; Tang Y
    J Vis Exp; 2017 Oct; (128):. PubMed ID: 29053681
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integrated fluidic system for bio-molecule separation.
    Hiraoka M; Fiorini P; Zhang L; De Malsche W; Majeed B; Sabuncuoglu Tezcan D; Desmet G; Yamashita I; Van Hoof C; Op de Beeck M
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6514-7. PubMed ID: 21096495
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Towards an Implantable, Low Flow Micropump That Uses No Power in the Blocked-Flow State.
    Johnson DG; Borkholder DA
    Micromachines (Basel); 2016 Jun; 7(6):. PubMed ID: 30404274
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An implantable MEMS drug delivery device for rapid delivery in ambulatory emergency care.
    Elman NM; Ho Duc HL; Cima MJ
    Biomed Microdevices; 2009 Jun; 11(3):625-31. PubMed ID: 19169826
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A low power, microvalve regulated architecture for drug delivery systems.
    Evans AT; Park JM; Chiravuri S; Gianchandani YB
    Biomed Microdevices; 2010 Feb; 12(1):159-68. PubMed ID: 19936930
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reservoir-based drug delivery systems utilizing microtechnology.
    Stevenson CL; Santini JT; Langer R
    Adv Drug Deliv Rev; 2012 Nov; 64(14):1590-602. PubMed ID: 22465783
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An air-bubble-actuated micropump for on-chip blood transportation.
    Chiu SH; Liu CH
    Lab Chip; 2009 Jun; 9(11):1524-33. PubMed ID: 19458858
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Review on the modeling of electrostatic MEMS.
    Chuang WC; Lee HL; Chang PZ; Hu YC
    Sensors (Basel); 2010; 10(6):6149-71. PubMed ID: 22219707
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An ultrasonically powered implantable micro-oxygen generator (IMOG).
    Maleki T; Cao N; Song SH; Kao C; Ko SC; Ziaie B
    IEEE Trans Biomed Eng; 2011 Nov; 58(11):3104-11. PubMed ID: 21824840
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design and Analyses of a Transdermal Drug Delivery Device (TD
    García J; Ríos I; Fonthal Rico F
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31766416
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Long-term characterization of neural electrodes based on parylene-caulked polydimethylsiloxane substrate.
    Jeong J; Chou N; Kim S
    Biomed Microdevices; 2016 Jun; 18(3):42. PubMed ID: 27165102
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polyimide/SU-8 catheter-tip MEMS gauge pressure sensor.
    Hasenkamp W; Forchelet D; Pataky K; Villard J; Van Lintel H; Bertsch A; Wang Q; Renaud P
    Biomed Microdevices; 2012 Oct; 14(5):819-28. PubMed ID: 22639233
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Frequency-controlled wireless shape memory polymer microactuator for drug delivery application.
    Zainal MA; Ahmad A; Mohamed Ali MS
    Biomed Microdevices; 2017 Mar; 19(1):8. PubMed ID: 28124762
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Approaches for drug delivery with intracortical probes.
    Spieth S; Schumacher A; Trenkle F; Brett O; Seidl K; Herwik S; Kisban S; Ruther P; Paul O; Aarts AA; Neves HP; Rich PD; Theobald DE; Holtzman T; Dalley JW; Verhoef BE; Janssen P; Zengerle R
    Biomed Tech (Berl); 2014 Aug; 59(4):291-303. PubMed ID: 24101367
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A flexible parylene probe for in vivo recordings from multiple subregions of the rat hippocampus.
    Huijing Xu ; Weltman A; Min-Chi Hsiao ; Scholten K; Meng E; Berger TW; Dong Song
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2806-2809. PubMed ID: 28268901
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Study and evaluation of a PCB-MEMS liquid microflow sensor.
    Petropoulos A; Kaltsas G
    Sensors (Basel); 2010; 10(10):8981-9001. PubMed ID: 22163392
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrogel-reinforced polypyrrole electroactuator.
    Yongchen Wang ; Bingxi Yan ; Yu Wu ; Liang Guo
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():133-136. PubMed ID: 28268297
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An electrochemically actuated MEMS device for individualized drug delivery: an in vitro study.
    Song P; Tng DJ; Hu R; Lin G; Meng E; Yong KT
    Adv Healthc Mater; 2013 Aug; 2(8):1170-8. PubMed ID: 23495127
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.