These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
410 related articles for article (PubMed ID: 2227412)
41. Alternative outcomes in assembly of promoter complexes: the roles of TBP and a flexible linker in placing TFIIIB on tRNA genes. Joazeiro CA; Kassavetis GA; Geiduschek EP Genes Dev; 1996 Mar; 10(6):725-39. PubMed ID: 8598299 [TBL] [Abstract][Full Text] [Related]
42. Transcription of a U6 small nuclear RNA gene in vitro. Transcription of a mouse U6 small nuclear RNA gene in vitro by RNA polymerase III is dependent on transcription factor(s) different from transcription factors IIIA, IIIB, and IIIC. Reddy R J Biol Chem; 1988 Nov; 263(31):15980-4. PubMed ID: 3182777 [TBL] [Abstract][Full Text] [Related]
44. hTFIIIB-beta stably binds to pol II promoters and recruits RNA polymerase III in a hTFIIIC1 dependent way. Kober I; Teichmann M; Seifart KH J Mol Biol; 1998 Nov; 284(1):7-20. PubMed ID: 9811538 [TBL] [Abstract][Full Text] [Related]
45. Widespread use of TATA elements in the core promoters for RNA polymerases III, II, and I in fission yeast. Hamada M; Huang Y; Lowe TM; Maraia RJ Mol Cell Biol; 2001 Oct; 21(20):6870-81. PubMed ID: 11564871 [TBL] [Abstract][Full Text] [Related]
46. Genome-wide occupancy profile of the RNA polymerase III machinery in Saccharomyces cerevisiae reveals loci with incomplete transcription complexes. Moqtaderi Z; Struhl K Mol Cell Biol; 2004 May; 24(10):4118-27. PubMed ID: 15121834 [TBL] [Abstract][Full Text] [Related]
47. Complex requirements for RNA polymerase III transcription of the Xenopus U6 promoter. Simmen KA; Mattaj IW Nucleic Acids Res; 1990 Oct; 18(19):5649-57. PubMed ID: 2216758 [TBL] [Abstract][Full Text] [Related]
48. Small nuclear RNA genes transcribed by either RNA polymerase II or RNA polymerase III in monocot plants share three promoter elements and use a strategy to regulate gene expression different from that used by their dicot plant counterparts. Connelly S; Marshallsay C; Leader D; Brown JW; Filipowicz W Mol Cell Biol; 1994 Sep; 14(9):5910-9. PubMed ID: 8065324 [TBL] [Abstract][Full Text] [Related]
49. A 7 bp mutation converts a human RNA polymerase II snRNA promoter into an RNA polymerase III promoter. Lobo SM; Hernandez N Cell; 1989 Jul; 58(1):55-67. PubMed ID: 2752422 [TBL] [Abstract][Full Text] [Related]
50. RNA-polymerase specificity of transcription of Arabidopsis U snRNA genes determined by promoter element spacing. Waibel F; Filipowicz W Nature; 1990 Jul; 346(6280):199-202. PubMed ID: 2366873 [TBL] [Abstract][Full Text] [Related]
51. Orientation and topography of RNA polymerase III in transcription complexes. Bartholomew B; Durkovich D; Kassavetis GA; Geiduschek EP Mol Cell Biol; 1993 Feb; 13(2):942-52. PubMed ID: 8423814 [TBL] [Abstract][Full Text] [Related]
52. Characterization of the U3 and U6 snRNA genes from wheat: U3 snRNA genes in monocot plants are transcribed by RNA polymerase III. Marshallsay C; Connelly S; Filipowicz W Plant Mol Biol; 1992 Sep; 19(6):973-83. PubMed ID: 1511142 [TBL] [Abstract][Full Text] [Related]
53. Encounters of Saccharomyces cerevisiae RNA polymerase III with its transcription factors during RNA chain elongation. Bardeleben C; Kassavetis GA; Geiduschek EP J Mol Biol; 1994 Jan; 235(4):1193-205. PubMed ID: 8308884 [TBL] [Abstract][Full Text] [Related]
54. The activity binding to the termination region of several pol III genes represents a separate entity and is distinct from a novel component enhancing U6 snRNA transcription. Oettel S; Kober I; Seifart KH Nucleic Acids Res; 1998 Oct; 26(19):4324-31. PubMed ID: 9742231 [TBL] [Abstract][Full Text] [Related]
55. Formation of open and elongating transcription complexes by RNA polymerase III. Kassavetis GA; Blanco JA; Johnson TE; Geiduschek EP J Mol Biol; 1992 Jul; 226(1):47-58. PubMed ID: 1619662 [TBL] [Abstract][Full Text] [Related]
56. Intragenic promoter adaptation and facilitated RNA polymerase III recycling in the transcription of SCR1, the 7SL RNA gene of Saccharomyces cerevisiae. Dieci G; Giuliodori S; Catellani M; Percudani R; Ottonello S J Biol Chem; 2002 Mar; 277(9):6903-14. PubMed ID: 11741971 [TBL] [Abstract][Full Text] [Related]
57. Autoregulation of an RNA polymerase II promoter by the RNA polymerase III transcription factor III C (TF(III)C) complex. Kleinschmidt RA; LeBlanc KE; Donze D Proc Natl Acad Sci U S A; 2011 May; 108(20):8385-9. PubMed ID: 21536876 [TBL] [Abstract][Full Text] [Related]
58. Compromised RNA polymerase III complex assembly leads to local alterations of intergenic RNA polymerase II transcription in Saccharomyces cerevisiae. Wang Q; Nowak CM; Korde A; Oh DH; Dassanayake M; Donze D BMC Biol; 2014 Oct; 12():89. PubMed ID: 25348158 [TBL] [Abstract][Full Text] [Related]
59. Promoter strength and structure dictate module composition in RNA polymerase III transcriptional activator elements. Myslinski E; Schuster C; Krol A; Carbon P J Mol Biol; 1993 Nov; 234(2):311-8. PubMed ID: 7693950 [TBL] [Abstract][Full Text] [Related]
60. High-level activation of transcription of the yeast U6 snRNA gene in chromatin by the basal RNA polymerase III transcription factor TFIIIC. Shivaswamy S; Kassavetis GA; Bhargava P Mol Cell Biol; 2004 May; 24(9):3596-606. PubMed ID: 15082757 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]