These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 22274209)

  • 1. Automatic montage of SD-OCT data sets.
    Li Y; Gregori G; Lam BL; Rosenfeld PJ
    Opt Express; 2011 Dec; 19(27):26239-48. PubMed ID: 22274209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exact surface registration of retinal surfaces from 3-D optical coherence tomography images.
    Lee S; Lebed E; Sarunic MV; Beg MF
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):609-17. PubMed ID: 25312906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motion artefact correction in retinal optical coherence tomography using local symmetry.
    Montuoro A; Wu J; Waldstein S; Gerendas B; Langs G; Simader C; Schmidt-Erfurth U
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 2):130-7. PubMed ID: 25485371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving image segmentation performance and quantitative analysis via a computer-aided grading methodology for optical coherence tomography retinal image analysis.
    Debuc DC; Salinas HM; Ranganathan S; Tátrai E; Gao W; Shen M; Wang J; Somfai GM; Puliafito CA
    J Biomed Opt; 2010; 15(4):046015. PubMed ID: 20799817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A generative model for OCT retinal layer segmentation by integrating graph-based multi-surface searching and image registration.
    Zheng Y; Xiao R; Wang Y; Gee JC
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 1):428-35. PubMed ID: 24505695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration--method and clinical examples.
    Jørgensen TM; Thomadsen J; Christensen U; Soliman W; Sander B
    J Biomed Opt; 2007; 12(4):041208. PubMed ID: 17867797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. User-guided segmentation for volumetric retinal optical coherence tomography images.
    Yin X; Chao JR; Wang RK
    J Biomed Opt; 2014 Aug; 19(8):086020. PubMed ID: 25147962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Comparison of spectral- and time-domain OCT in regard of the automatic detection of central retinal thickness].
    Beutelspacher SC; Schmidbauer JM
    Klin Monbl Augenheilkd; 2009 Feb; 226(2):115-9. PubMed ID: 19206045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Objective and expert-independent validation of retinal image registration algorithms by a projective imaging distortion model.
    Lee S; Reinhardt JM; Cattin PC; Abràmoff MD
    Med Image Anal; 2010 Aug; 14(4):539-49. PubMed ID: 20493760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated drusen segmentation and quantification in SD-OCT images.
    Chen Q; Leng T; Zheng L; Kutzscher L; Ma J; de Sisternes L; Rubin DL
    Med Image Anal; 2013 Dec; 17(8):1058-72. PubMed ID: 23880375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Registration of OCT fundus images with color fundus photographs based on blood vessel ridges.
    Li Y; Gregori G; Knighton RW; Lujan BJ; Rosenfeld PJ
    Opt Express; 2011 Jan; 19(1):7-16. PubMed ID: 21263537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets.
    Zawadzki RJ; Fuller AR; Wiley DF; Hamann B; Choi SS; Werner JS
    J Biomed Opt; 2007; 12(4):041206. PubMed ID: 17867795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of retinal thickness by Fourier-domain optical coherence tomography and OCT retinal image analysis software segmentation analysis derived from Stratus optical coherence tomography images.
    Tátrai E; Ranganathan S; Ferencz M; DeBuc DC; Somfai GM
    J Biomed Opt; 2011 May; 16(5):056004. PubMed ID: 21639572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated retinal layers segmentation in SD-OCT images using dual-gradient and spatial correlation smoothness constraint.
    Niu S; Chen Q; de Sisternes L; Rubin DL; Zhang W; Liu Q
    Comput Biol Med; 2014 Nov; 54():116-28. PubMed ID: 25240102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Landmark matching based automatic retinal image registration with linear programming and self-similarities.
    Zheng Y; Hunter AA; Wu J; Wang H; Gao J; Maguire MG; Gee JC
    Inf Process Med Imaging; 2011; 22():674-85. PubMed ID: 21761695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional analysis of retinal layer texture: identification of fluid-filled regions in SD-OCT of the macula.
    Quellec G; Lee K; Dolejsi M; Garvin MK; Abràmoff MD; Sonka M
    IEEE Trans Med Imaging; 2010 Jun; 29(6):1321-30. PubMed ID: 20363675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probabilistic intra-retinal layer segmentation in 3-D OCT images using global shape regularization.
    Rathke F; Schmidt S; Schnörr C
    Med Image Anal; 2014 Jul; 18(5):781-94. PubMed ID: 24835184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elastic registration for retinal images based on reconstructed vascular trees.
    Fang B; Tang YY
    IEEE Trans Biomed Eng; 2006 Jun; 53(6):1183-7. PubMed ID: 16761845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic segmentation of the optic nerve head for deformation measurements in video rate optical coherence tomography.
    Hidalgo-Aguirre M; Gitelman J; Lesk MR; Costantino S
    J Biomed Opt; 2015 Nov; 20(11):116008. PubMed ID: 26598974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated segmentation of 3-D spectral OCT retinal blood vessels by neural canal opening false positive suppression.
    Hu Z; Niemeijer M; Abràmoft MD; Lee K; Garvin MK
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):33-40. PubMed ID: 20879380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.