These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 22274337)

  • 1. Multicore composite single-mode polymer fiber.
    Leon-Saval SG; Lwin R; Argyros A
    Opt Express; 2012 Jan; 20(1):141-8. PubMed ID: 22274337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of 3-hole-assisted PMMA optical fiber with double cladding for UV-induced FBG fabrication.
    Cheng KC; Tse ML; Zhou G; Pun CF; Chan WK; Lu C; Wai PK; Tam HY
    Opt Express; 2009 Feb; 17(4):2080-8. PubMed ID: 19219112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-reconstructing all-optical poling in polymer fibers.
    Barille R; Samoc A; Luther-Davies B; Samoc M; Nunzi JM
    Opt Lett; 2013 Aug; 38(16):2945-8. PubMed ID: 24104617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seven-core multicore fiber transmissions for passive optical network.
    Zhu B; Taunay TF; Yan MF; Fini JM; Fishteyn M; Monberg EM; Dimarcello FV
    Opt Express; 2010 May; 18(11):11117-22. PubMed ID: 20588970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Humidity insensitive TOPAS polymer fiber Bragg grating sensor.
    Yuan W; Khan L; Webb DJ; Kalli K; Rasmussen HK; Stefani A; Bang O
    Opt Express; 2011 Sep; 19(20):19731-9. PubMed ID: 21996915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Guiding in the visible with "colorful" solid-core Bragg fibers.
    Dupuis A; Guo N; Gauvreau B; Hassani A; Pone E; Boismenu F; Skorobogatiy M
    Opt Lett; 2007 Oct; 32(19):2882-4. PubMed ID: 17909605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and experimental observation of monolithic multi-air-core fiber array for image transmission.
    Wang J; Yang X; Wang L
    Opt Express; 2008 May; 16(11):7703-8. PubMed ID: 18545479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple sheath-flow microfluidic device for micro/nanomanufacturing: fabrication of hydrodynamically shaped polymer fibers.
    Thangawng AL; Howell PB; Richards JJ; Erickson JS; Ligler FS
    Lab Chip; 2009 Nov; 9(21):3126-30. PubMed ID: 19823729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers.
    Markos C; Yuan W; Vlachos K; Town GE; Bang O
    Opt Express; 2011 Apr; 19(8):7790-8. PubMed ID: 21503089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-density channel alignment of graded index core polymer optical waveguide and its crosstalk analysis with ray tracing method.
    Hsu HH; Ishigure T
    Opt Express; 2010 Jun; 18(13):13368-78. PubMed ID: 20588466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic-resonance evaluation of the suitability of microstructured polymer optical fibers as sensors for ionic aqueous solutions.
    Cox FM; Momot KI; Kuchel PW
    ACS Appl Mater Interfaces; 2009 Jan; 1(1):197-203. PubMed ID: 20355772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and performance of poly(methyl methacrylate) microfluidic chips with fiber cores.
    Fan H; Chen Z; Zhang L; Yang P; Chen G
    J Chromatogr A; 2008 Feb; 1179(2):224-8. PubMed ID: 18096173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical modulation of guided mode resonance in the waveguide grating structure incorporated with azo-doped-poly(methylmethacrylate) cladding layer.
    Lin JH; Huang YC; DiepLai N; Kan HC; Hsu CC
    Opt Express; 2012 Jan; 20(1):377-84. PubMed ID: 22274361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(methyl metacrylate) conductive fiber optic transducers as dual biosensor platforms.
    Atias D; Abu-Rabeah K; Herrmann S; Frenkel J; Tavor D; Cosnier S; Marks RS
    Biosens Bioelectron; 2009 Aug; 24(12):3683-7. PubMed ID: 19487114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fan-in/out polymer optical waveguide for a multicore fiber fabricated using the mosquito method.
    Suganuma D; Ishigure T
    Opt Express; 2015 Jan; 23(2):1585-93. PubMed ID: 25835916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mass-manufacturable polymer microfluidic device for dual fiber optical trapping.
    De Coster D; Ottevaere H; Vervaeke M; Van Erps J; Callewaert M; Wuytens P; Simpson SH; Hanna S; De Malsche W; Thienpont H
    Opt Express; 2015 Nov; 23(24):30991-1009. PubMed ID: 26698730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of micro protrusive lens arrays atop poly(methyl methacrylate).
    Zhao Y; Wang CC; Huang WM; Purnawali H; An L
    Opt Express; 2011 Dec; 19(27):26000-5. PubMed ID: 22274188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-mode-area multicore fibers in the single-moded regime.
    Fini JM
    Opt Express; 2011 Feb; 19(5):4042-6. PubMed ID: 21369232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors.
    Woyessa G; Fasano A; Stefani A; Markos C; Nielsen K; Rasmussen HK; Bang O
    Opt Express; 2016 Jan; 24(2):1253-60. PubMed ID: 26832507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct restoration of severely damaged incisors using short fiber-reinforced composite resin.
    Garoushi S; Vallittu PK; Lassila LV
    J Dent; 2007 Sep; 35(9):731-6. PubMed ID: 17614187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.