These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 22274374)

  • 1. A simple model for the resonance shift of localized plasmons due to dielectric particle adhesion.
    Antosiewicz TJ; Apell SP; Claudio V; Käll M
    Opt Express; 2012 Jan; 20(1):524-33. PubMed ID: 22274374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment.
    Miller MM; Lazarides AA
    J Phys Chem B; 2005 Nov; 109(46):21556-65. PubMed ID: 16853799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical properties of nanohole arrays in metal-dielectric double films prepared by mask-on-metal colloidal lithography.
    Junesch J; Sannomiya T; Dahlin AB
    ACS Nano; 2012 Nov; 6(11):10405-15. PubMed ID: 23098107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Giant photoluminescence enhancement in SiC nanocrystals by resonant semiconductor exciton-metal surface plasmon coupling.
    Dai D; Dong Z; Fan J
    Nanotechnology; 2013 Jan; 24(2):025201. PubMed ID: 23238520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light trapping with plasmonic particles: beyond the dipole model.
    Beck FJ; Mokkapati S; Catchpole KR
    Opt Express; 2011 Dec; 19(25):25230-41. PubMed ID: 22273914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of retardation on localized surface plasmon resonances in a metallic nanorod.
    Davis TJ; Vernon KC; Gómez DE
    Opt Express; 2009 Dec; 17(26):23655-63. PubMed ID: 20052075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shifting of surface plasmon resonance due to electromagnetic coupling between graphene and Au nanoparticles.
    Niu J; Shin YJ; Son J; Lee Y; Ahn JH; Yang H
    Opt Express; 2012 Aug; 20(18):19690-6. PubMed ID: 23037021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of modes in a metal-coated nano-fiber.
    Song J; Zaccaria RP; Dong G; Di Fabrizio E; Yu MB; Lo GQ
    Opt Express; 2011 Dec; 19(25):25206-21. PubMed ID: 22273912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface plasmon resonance enhanced photoconductivity in Cu nanoparticle films.
    Yang KY; Choi KC; Kang IS; Won Ahn C
    Opt Express; 2010 Aug; 18(16):16379-86. PubMed ID: 20721025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical limit of localized surface plasmon resonance sensitivity to local refractive index change and its comparison to conventional surface plasmon resonance sensor.
    Zalyubovskiy SJ; Bogdanova M; Deinega A; Lozovik Y; Pris AD; An KH; Hall WP; Potyrailo RA
    J Opt Soc Am A Opt Image Sci Vis; 2012 Jun; 29(6):994-1002. PubMed ID: 22673431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface plasmon resonance in a hexagonal nanostructure formed by seven core shell nanocylinders.
    Sung MJ; Ma YF; Chau YF; Huang DW
    Appl Opt; 2010 Feb; 49(5):920-6. PubMed ID: 20154763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element simulation of a perturbed axial-symmetric whispering-gallery mode and its use for intensity enhancement with a nanoparticle coupled to a microtoroid.
    Kaplan A; Tomes M; Carmon T; Kozlov M; Cohen O; Bartal G; Schwefel HG
    Opt Express; 2013 Jun; 21(12):14169-80. PubMed ID: 23787608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical magnetic field enhancement through coupling magnetic plasmons to Tamm plasmons.
    Liu H; Sun X; Yao F; Pei Y; Huang F; Yuan H; Jiang Y
    Opt Express; 2012 Aug; 20(17):19160-7. PubMed ID: 23038556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced surface plasmon resonance based on the silver nanoshells connected by the nanobars.
    Chau YF; Lin YJ; Tsai DP
    Opt Express; 2010 Feb; 18(4):3510-8. PubMed ID: 20389360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasphonics: local hybridization of plasmons and phonons.
    Marty R; Mlayah A; Arbouet A; Girard C; Tripathy S
    Opt Express; 2013 Feb; 21(4):4551-9. PubMed ID: 23481988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons.
    Christensen J; Manjavacas A; Thongrattanasiri S; Koppens FH; de Abajo FJ
    ACS Nano; 2012 Jan; 6(1):431-40. PubMed ID: 22147667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman enhancement on a broadband meta-surface.
    Ayas S; Güner H; Türker B; Ekiz OÖ; Dirisaglik F; Okyay AK; Dâna A
    ACS Nano; 2012 Aug; 6(8):6852-61. PubMed ID: 22845672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-loss and high-symmetry negative refractive index media by hybrid dielectric resonators.
    Lai YC; Chen CK; Yang YH; Yen TJ
    Opt Express; 2012 Jan; 20(3):2876-80. PubMed ID: 22330524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.