These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 22274432)
1. Physical mechanism for flat-to-lenticular lens conversion in homogeneous liquid crystal cell with periodically undulated electrode. Na JH; Park SC; Kim SU; Choi Y; Lee SD Opt Express; 2012 Jan; 20(2):864-9. PubMed ID: 22274432 [TBL] [Abstract][Full Text] [Related]
2. An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes. Lin HC; Lin YH Opt Express; 2012 Jan; 20(3):2045-52. PubMed ID: 22330445 [TBL] [Abstract][Full Text] [Related]
3. Switchable focus using a polymeric lenticular microlens array and a polarization rotator. Ren H; Xu S; Liu Y; Wu ST Opt Express; 2013 Apr; 21(7):7916-25. PubMed ID: 23571883 [TBL] [Abstract][Full Text] [Related]
6. A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths. Kao YY; Chao PC; Hsueh CW Opt Express; 2010 Aug; 18(18):18506-18. PubMed ID: 20940742 [TBL] [Abstract][Full Text] [Related]
7. Optical lens with electrically variable focus using an optically hidden dielectric structure. Asatryan K; Presnyakov V; Tork A; Zohrabyan A; Bagramyan A; Galstian T Opt Express; 2010 Jun; 18(13):13981-92. PubMed ID: 20588530 [TBL] [Abstract][Full Text] [Related]
8. Achieving high focusing power for a large-aperture liquid crystal lens with novel hole-and-ring electrodes. Chiu CW; Lin YC; Chao PC; Fuh AY Opt Express; 2008 Nov; 16(23):19277-84. PubMed ID: 19582020 [TBL] [Abstract][Full Text] [Related]
9. Near-diffraction-limited and low-haze electro-optical tunable liquid crystal lens with floating electrodes. Li L; Bryant D; Van Heugten T; Bos PJ Opt Express; 2013 Apr; 21(7):8371-81. PubMed ID: 23571926 [TBL] [Abstract][Full Text] [Related]
10. Polarization independent adaptive microlens with a blue-phase liquid crystal. Li Y; Wu ST Opt Express; 2011 Apr; 19(9):8045-50. PubMed ID: 21643053 [TBL] [Abstract][Full Text] [Related]
11. Optimization of refractive liquid crystal lenses using an efficient multigrid simulation. Milton H; Brimicombe P; Morgan P; Gleeson H; Clamp J Opt Express; 2012 May; 20(10):11159-65. PubMed ID: 22565739 [TBL] [Abstract][Full Text] [Related]
13. Preventing occurrence of disclination lines in liquid crystal lenses with a large aperture by means of polymer stabilization. Hsu CJ; Sheu CR Opt Express; 2011 Aug; 19(16):14999-5008. PubMed ID: 21934861 [TBL] [Abstract][Full Text] [Related]
14. An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio. Lin YH; Chen MS; Lin HC Opt Express; 2011 Feb; 19(5):4714-21. PubMed ID: 21369302 [TBL] [Abstract][Full Text] [Related]
15. Realization of liquid crystal lens of large aperture and low driving voltages using thin layer of weakly conductive material. Ye M; Wang B; Sato S Opt Express; 2008 Mar; 16(6):4302-8. PubMed ID: 18542526 [TBL] [Abstract][Full Text] [Related]
16. Polymer-stabilized liquid crystal microlens array with large dynamic range and fast response time. Ren H; Xu S; Wu ST Opt Lett; 2013 Aug; 38(16):3144-7. PubMed ID: 24104671 [TBL] [Abstract][Full Text] [Related]
17. A new dual-frequency liquid crystal lens with ring-and-pie electrodes and a driving scheme to prevent disclination lines and improve recovery time. Kao YY; Chao PC Sensors (Basel); 2011; 11(5):5402-15. PubMed ID: 22163906 [TBL] [Abstract][Full Text] [Related]
18. Ommatidia structure based on double layers of liquid crystal microlens array. Kang S; Qing T; Sang H; Zhang X; Xie C Appl Opt; 2013 Nov; 52(33):7912-8. PubMed ID: 24513741 [TBL] [Abstract][Full Text] [Related]