BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 22274490)

  • 1. Diffraction pattern study for cell type identification.
    Mihailescu M; Costescu J
    Opt Express; 2012 Jan; 20(2):1465-74. PubMed ID: 22274490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated imaging, identification, and counting of similar cells from digital hologram reconstructions.
    Mihailescu M; Scarlat M; Gheorghiu A; Costescu J; Kusko M; Paun IA; Scarlat E
    Appl Opt; 2011 Jul; 50(20):3589-97. PubMed ID: 21743570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution synthetic-aperture digital holography with digital phase and pupil correction.
    Tippie AE; Kumar A; Fienup JR
    Opt Express; 2011 Jun; 19(13):12027-38. PubMed ID: 21716438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-speed scattering medium characterization with application to focusing light through turbid media.
    Conkey DB; Caravaca-Aguirre AM; Piestun R
    Opt Express; 2012 Jan; 20(2):1733-40. PubMed ID: 22274516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative phase microscopy using defocusing by means of a spatial light modulator.
    Camacho L; Micó V; Zalevsky Z; García J
    Opt Express; 2010 Mar; 18(7):6755-66. PubMed ID: 20389696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Partition calculation for zero-order and conjugate image removal in digital in-line holography.
    Ma L; Wang H; Li Y; Jin H
    Opt Express; 2012 Jan; 20(2):1805-15. PubMed ID: 22274525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis on the erythrocyte shape changes using wavelet transforms.
    Kavitha A; Ramakrishnan S
    Clin Hemorheol Microcirc; 2005; 33(4):327-35. PubMed ID: 16317242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Development of the chip system for measurement of red blood cell rheology].
    Liao YJ; Zheng XL; Zhang WX; Peng CL
    Zhongguo Yi Liao Qi Xie Za Zhi; 2002 Jul; 26(4):237-40. PubMed ID: 16104272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calibration of a digital in-line holographic microscopy system: depth of focus and bioprocess analysis.
    Ryle JP; McDonnell S; Glennon B; Sheridan JT
    Appl Opt; 2013 Mar; 52(7):C78-87. PubMed ID: 23458821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring of laser micromanipulated optically trapped cells by digital holographic microscopy.
    Kemper B; Langehanenberg P; Höink A; von Bally G; Wottowah F; Schinkinger S; Guck J; Käs J; Bredebusch I; Schnekenburger J; Schütze K
    J Biophotonics; 2010 Jul; 3(7):425-31. PubMed ID: 20533430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3-D visualization and identification of biological microorganisms using partially temporal incoherent light in-line computational holographic imaging.
    Moon I; Javidi B
    IEEE Trans Med Imaging; 2008 Dec; 27(12):1782-90. PubMed ID: 19033094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microscopic investigation of erythrocyte deformation dynamics.
    Zhao R; Antaki JF; Naik T; Bachman TN; Kameneva MV; Wu ZJ
    Biorheology; 2006; 43(6):747-65. PubMed ID: 17148857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental demonstration of parallel two-step phase-shifting digital holography.
    Tahara T; Ito K; Fujii M; Kakue T; Shimozato Y; Awatsuji Y; Nishio K; Ura S; Kubota T; Matoba O
    Opt Express; 2010 Aug; 18(18):18975-80. PubMed ID: 20940791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The laser diffractoscope - a new and fast system to analyse red blood cell flexibility with high accuracy.
    Schauf B; Aydeniz B; Bayer R; Wallwiener D
    Lasers Med Sci; 2003; 18(1):45-50. PubMed ID: 12627273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell shape identification using digital holographic microscopy.
    Zakrisson J; Schedin S; Andersson M
    Appl Opt; 2015 Aug; 54(24):7442-8. PubMed ID: 26368783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional light-scattering and deformation of individual biconcave human blood cells in optical tweezers.
    Yu L; Sheng Y; Chiou A
    Opt Express; 2013 May; 21(10):12174-84. PubMed ID: 23736438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of the fraction poorly deformable red blood cells using ektacytometry.
    Streekstra GJ; Dobbe JG; Hoekstra AG
    Opt Express; 2010 Jun; 18(13):14173-82. PubMed ID: 20588551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A methodology to study the deformability of red blood cells flowing in microcapillaries in vitro.
    Tomaiuolo G; Preziosi V; Simeone M; Guido S; Ciancia R; Martinelli V; Rinaldi C; Rotoli B
    Ann Ist Super Sanita; 2007; 43(2):186-92. PubMed ID: 17634668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mask-assisted deterministic phase-amplitude retrieval from a single far-field intensity diffraction pattern: two experimental proofs of principle using visible light.
    Podorov SG; Bishop AI; Paganin DM; Pavlov KM
    Ultramicroscopy; 2011 Jun; 111(7):782-7. PubMed ID: 21664548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microdeformation of RBCs under oxidative stress measured by digital holographic microscopy and optical tweezers.
    Liu J; Zhu L; Zhang F; Dong M; Qu X
    Appl Opt; 2019 May; 58(15):4042-4046. PubMed ID: 31158157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.