These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 22274495)

  • 1. New perspective on passively quenched single photon avalanche diodes: effect of feedback on impact ionization.
    Ramirez DA; Hayat MM; Rees GJ; Jiang X; Itzler MA
    Opt Express; 2012 Jan; 20(2):1512-29. PubMed ID: 22274495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monolithic time to amplitude converter for time correlated single photon counting.
    Resnati D; Rech I; Gallivanoni A; Ghioni M
    Rev Sci Instrum; 2009 Aug; 80(8):086102. PubMed ID: 19725686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Custom single-photon avalanche diode with integrated front-end for parallel photon timing applications.
    Cammi C; Panzeri F; Gulinatti A; Rech I; Ghioni M
    Rev Sci Instrum; 2012 Mar; 83(3):033104. PubMed ID: 22462903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gated mode superconducting nanowire single photon detectors.
    Akhlaghi MK; Majedi AH
    Opt Express; 2012 Jan; 20(2):1608-16. PubMed ID: 22274503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Note: Simple calibration of the counting-rate dependence of the timing shift of single photon avalanche diodes by photon interval analysis.
    Otosu T; Ishii K; Tahara T
    Rev Sci Instrum; 2013 Mar; 84(3):036105. PubMed ID: 23556857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ultra low noise telecom wavelength free running single photon detector using negative feedback avalanche diode.
    Yan Z; Hamel DR; Heinrichs AK; Jiang X; Itzler MA; Jennewein T
    Rev Sci Instrum; 2012 Jul; 83(7):073105. PubMed ID: 22852669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplication theory for dynamically biased avalanche photodiodes: new limits for gain bandwidth product.
    Hayat MM; Ramirez DA
    Opt Express; 2012 Mar; 20(7):8024-40. PubMed ID: 22453474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variable-load quenching circuit for single-photon avalanche diodes.
    Tisa S; Guerrieri F; Zappa F
    Opt Express; 2008 Feb; 16(3):2232-44. PubMed ID: 18542303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a Time-Resolved Diffuse Optical Spectroscopy Prototype Using Low-Cost, Compact Single Photon Avalanche Detectors for Tissue Optics Applications.
    Alayed M; Palubiak DP; Deen MJ
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30380688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-distance entanglement-based quantum key distribution experiment using practical detectors.
    Takesue H; Harada K; Tamaki K; Fukuda H; Tsuchizawa T; Watanabe T; Yamada K; Itabashi S
    Opt Express; 2010 Aug; 18(16):16777-87. PubMed ID: 20721069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new single-photon avalanche diode in 90nm standard CMOS technology.
    Karami MA; Gersbach M; Yoon HJ; Charbon E
    Opt Express; 2010 Oct; 18(21):22158-66. PubMed ID: 20941117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Operation of silicon single photon avalanche diodes at cryogenic temperature.
    Rech I; Labanca I; Armellini G; Gulinatti A; Ghioni M; Cova S
    Rev Sci Instrum; 2007 Jun; 78(6):063105. PubMed ID: 17614603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-resolved diffuse optical spectroscopy up to 1700 nm by means of a time-gated InGaAs/InP single-photon avalanche diode.
    Bargigia I; Tosi A; Bahgat Shehata A; Della Frera A; Farina A; Bassi A; Taroni P; Dalla Mora A; Zappa F; Cubeddu R; Pifferi A
    Appl Spectrosc; 2012 Aug; 66(8):944-50. PubMed ID: 22800436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A bridge between the single-photon and squeezed-vacuum states.
    Jain N; Huisman SR; Bimbard E; Lvovsky AI
    Opt Express; 2010 Aug; 18(17):18254-9. PubMed ID: 20721217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design considerations of high-performance InGaAs/InP single-photon avalanche diodes for quantum key distribution.
    Ma J; Bai B; Wang LJ; Tong CZ; Jin G; Zhang J; Pan JW
    Appl Opt; 2016 Sep; 55(27):7497-502. PubMed ID: 27661574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of hybrid polarization-orbital angular momentum entangled states.
    Nagali E; Sciarrino F
    Opt Express; 2010 Aug; 18(17):18243-8. PubMed ID: 20721215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance trade-offs in single-photon avalanche diode miniaturization.
    Finkelstein H; Hsu MJ; Zlatanovic S; Esener S
    Rev Sci Instrum; 2007 Oct; 78(10):103103. PubMed ID: 17979402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Storage and control of optical photons using Rydberg polaritons.
    Maxwell D; Szwer DJ; Paredes-Barato D; Busche H; Pritchard JD; Gauguet A; Weatherill KJ; Jones MP; Adams CS
    Phys Rev Lett; 2013 Mar; 110(10):103001. PubMed ID: 23521254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical crosstalk in single photon avalanche diode arrays: a new complete model.
    Rech I; Ingargiola A; Spinelli R; Labanca I; Marangoni S; Ghioni M; Cova S
    Opt Express; 2008 Jun; 16(12):8381-94. PubMed ID: 18545552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate.
    Dixon AR; Yuan ZL; Dynes JF; Sharpe AW; Shields AJ
    Opt Express; 2008 Nov; 16(23):18790-7. PubMed ID: 19581967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.