These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 22274827)
1. Growth response of maize plantlets inoculated with Enterobacter spp., as a model for alternative agriculture. Morales-García YE; Juárez-Hernández D; Aragón-Hernández C; Mascarua-Esparza MA; Bustillos-Cristales MR; Fuentes-Ramírez LE; Martinez-Contreras RD; Munoz-Rojas J Rev Argent Microbiol; 2011; 43(4):287-93. PubMed ID: 22274827 [TBL] [Abstract][Full Text] [Related]
2. Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna. Hameeda B; Harini G; Rupela OP; Wani SP; Reddy G Microbiol Res; 2008; 163(2):234-42. PubMed ID: 16831538 [TBL] [Abstract][Full Text] [Related]
3. Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields. Nadeem SM; Zahir ZA; Naveed M; Arshad M Can J Microbiol; 2009 Nov; 55(11):1302-9. PubMed ID: 19940939 [TBL] [Abstract][Full Text] [Related]
4. Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Nadeem SM; Zahir ZA; Naveed M; Arshad M Can J Microbiol; 2007 Oct; 53(10):1141-9. PubMed ID: 18026206 [TBL] [Abstract][Full Text] [Related]
5. Promotion of growth and Cu accumulation of bio-energy crop (Zea mays) by bacteria: implications for energy plant biomass production and phytoremediation. Sheng X; Sun L; Huang Z; He L; Zhang W; Chen Z J Environ Manage; 2012 Jul; 103():58-64. PubMed ID: 22459071 [TBL] [Abstract][Full Text] [Related]
7. Characterization of plant growth-promoting alkalotolerant Alcaligenes and Bacillus strains for mitigating the alkaline stress in Zea mays. Dixit VK; Misra S; Mishra SK; Tewari SK; Joshi N; Chauhan PS Antonie Van Leeuwenhoek; 2020 Jul; 113(7):889-905. PubMed ID: 32152804 [TBL] [Abstract][Full Text] [Related]
8. Rhizosphere competent Pantoea agglomerans enhances maize (Zea mays) and chickpea (Cicer arietinum L.) growth, without altering the rhizosphere functional diversity. Mishra A; Chauhan PS; Chaudhry V; Tripathi M; Nautiyal CS Antonie Van Leeuwenhoek; 2011 Oct; 100(3):405-13. PubMed ID: 21638110 [TBL] [Abstract][Full Text] [Related]
9. Plant growth promotion and root colonization by EPS producing Enterobacter sp. RZS5 under heavy metal contaminated soil. Sayyed RZ; Patel PR; Shaikh SS Indian J Exp Biol; 2015 Feb; 53(2):116-23. PubMed ID: 25757243 [TBL] [Abstract][Full Text] [Related]
10. Improvement of Cupressus atlantica Gaussen growth by inoculation with native arbuscular mycorrhizal fungi. Ouahmane L; Hafidi M; Thioulouse J; Ducousso M; Kisa M; Prin Y; Galiana A; Boumezzough A; Duponnois R J Appl Microbiol; 2007 Sep; 103(3):683-90. PubMed ID: 17714402 [TBL] [Abstract][Full Text] [Related]
11. Pathogenic effects of Salmonella enterica subspecies enterica serovar Typhimurium on sprouting and growth of maize. Singh BR; Agarwal R; Chandra M Indian J Exp Biol; 2004 Nov; 42(11):1100-6. PubMed ID: 15587117 [TBL] [Abstract][Full Text] [Related]
12. Control of Fusarium verticillioides, cause of ear rot of maize, by Pseudomonas fluorescens. Nayaka SC; Shankar AC; Reddy MS; Niranjana SR; Prakash HS; Shetty HS; Mortensen CN Pest Manag Sci; 2009 Jul; 65(7):769-75. PubMed ID: 19347968 [TBL] [Abstract][Full Text] [Related]
13. Influence of Bacillus spp. strains on seedling growth and physiological parameters of sorghum under moisture stress conditions. Grover M; Madhubala R; Ali SZ; Yadav SK; Venkateswarlu B J Basic Microbiol; 2014 Sep; 54(9):951-61. PubMed ID: 24027209 [TBL] [Abstract][Full Text] [Related]
14. [Effects of different cropping modes on crop root growth, yield, and rhizosphere soil microbes' number]. Yong TW; Yang WY; Xiang DB; Chen XR Ying Yong Sheng Tai Xue Bao; 2012 Jan; 23(1):125-32. PubMed ID: 22489489 [TBL] [Abstract][Full Text] [Related]
15. Bacillus subtilis and Enterobacter cloacae endophytes from healthy Theobroma cacao L. trees can systemically colonize seedlings and promote growth. Leite HA; Silva AB; Gomes FP; Gramacho KP; Faria JC; de Souza JT; Loguercio LL Appl Microbiol Biotechnol; 2013 Mar; 97(6):2639-51. PubMed ID: 23212670 [TBL] [Abstract][Full Text] [Related]
16. [Population of entophytic bacteria in maize roots and its dynamic analysis]. Gao Z; Zhuang J; Chen J; Liu X; Tang S Ying Yong Sheng Tai Xue Bao; 2004 Aug; 15(8):1344-8. PubMed ID: 15573985 [TBL] [Abstract][Full Text] [Related]
17. Isolation and characterization of a plant growth-promoting rhizobacterium, Serratia sp. SY5. Koo SY; Cho KS J Microbiol Biotechnol; 2009 Nov; 19(11):1431-8. PubMed ID: 19996698 [TBL] [Abstract][Full Text] [Related]
18. Effect of inoculation with nitrogen-fixing bacterium Pseudomonas stutzeri A1501 on maize plant growth and the microbiome indigenous to the rhizosphere. Ke X; Feng S; Wang J; Lu W; Zhang W; Chen M; Lin M Syst Appl Microbiol; 2019 Mar; 42(2):248-260. PubMed ID: 30477902 [TBL] [Abstract][Full Text] [Related]
19. Microbial inoculants and organic amendment improves plant establishment and soil rehabilitation under semiarid conditions. Mengual C; Schoebitz M; Azcón R; Roldán A J Environ Manage; 2014 Feb; 134():1-7. PubMed ID: 24463051 [TBL] [Abstract][Full Text] [Related]
20. Exploration of novel rhizospheric yeast isolate as fertilizing soil inoculant for improvement of maize cultivation. Mukherjee S; Sen SK J Sci Food Agric; 2015 May; 95(7):1491-9. PubMed ID: 25065763 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]