BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 22274953)

  • 1. The archaeal COG1901/DUF358 SPOUT-methyltransferase members, together with pseudouridine synthase Pus10, catalyze the formation of 1-methylpseudouridine at position 54 of tRNA.
    Chatterjee K; Blaby IK; Thiaville PC; Majumder M; Grosjean H; Yuan YA; Gupta R; de Crécy-Lagard V
    RNA; 2012 Mar; 18(3):421-33. PubMed ID: 22274953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of the enzyme responsible for N1-methylation of pseudouridine 54 in archaeal tRNAs.
    Wurm JP; Griese M; Bahr U; Held M; Heckel A; Karas M; Soppa J; Wöhnert J
    RNA; 2012 Mar; 18(3):412-20. PubMed ID: 22274954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pseudouridine formation in archaeal RNAs: The case of Haloferax volcanii.
    Blaby IK; Majumder M; Chatterjee K; Jana S; Grosjean H; de Crécy-Lagard V; Gupta R
    RNA; 2011 Jul; 17(7):1367-80. PubMed ID: 21628430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of forefinger and thumb loops in production of Ψ54 and Ψ55 in tRNAs by archaeal Pus10.
    Joardar A; Jana S; Fitzek E; Gurha P; Majumder M; Chatterjee K; Geisler M; Gupta R
    RNA; 2013 Sep; 19(9):1279-94. PubMed ID: 23898217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The human ortholog of archaeal Pus10 produces pseudouridine 54 in select tRNAs where its recognition sequence contains a modified residue.
    Deogharia M; Mukhopadhyay S; Joardar A; Gupta R
    RNA; 2019 Mar; 25(3):336-351. PubMed ID: 30530625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Archaeal Pus10 proteins can produce both pseudouridine 54 and 55 in tRNA.
    Gurha P; Gupta R
    RNA; 2008 Dec; 14(12):2521-7. PubMed ID: 18952823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Cm56 tRNA modification in archaea is catalyzed either by a specific 2'-O-methylase, or a C/D sRNP.
    Renalier MH; Joseph N; Gaspin C; Thebault P; Mougin A
    RNA; 2005 Jul; 11(7):1051-63. PubMed ID: 15987815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Major identity determinants for enzymatic formation of ribothymidine and pseudouridine in the T psi-loop of yeast tRNAs.
    Becker HF; Motorin Y; Sissler M; Florentz C; Grosjean H
    J Mol Biol; 1997 Dec; 274(4):505-18. PubMed ID: 9417931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of Eukaryal and Archaeal Pseudouridine Synthase Pus10.
    Fitzek E; Joardar A; Gupta R; Geisler M
    J Mol Evol; 2018 Jan; 86(1):77-89. PubMed ID: 29349599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identity elements required for enzymatic formation of N2,N2-dimethylguanosine from N2-monomethylated derivative and its possible role in avoiding alternative conformations in archaeal tRNA.
    Urbonavicius J; Armengaud J; Grosjean H
    J Mol Biol; 2006 Mar; 357(2):387-99. PubMed ID: 16434050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two different mechanisms for tRNA ribose methylation in Archaea: a short survey.
    Clouet-d'Orval B; Gaspin C; Mougin A
    Biochimie; 2005; 87(9-10):889-95. PubMed ID: 16164996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pseudouridine at position 55 in tRNA controls the contents of other modified nucleotides for low-temperature adaptation in the extreme-thermophilic eubacterium Thermus thermophilus.
    Ishida K; Kunibayashi T; Tomikawa C; Ochi A; Kanai T; Hirata A; Iwashita C; Hori H
    Nucleic Acids Res; 2011 Mar; 39(6):2304-18. PubMed ID: 21097467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Gateway platform for functional genomics in Haloferax volcanii: deletion of three tRNA modification genes.
    El Yacoubi B; Phillips G; Blaby IK; Haas CE; Cruz Y; Greenberg J; de Crécy-Lagard V
    Archaea; 2009 Feb; 2(4):211-9. PubMed ID: 19478918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential roles of archaeal box H/ACA proteins in guide RNA-dependent and independent pseudouridine formation.
    Gurha P; Joardar A; Chaurasia P; Gupta R
    RNA Biol; 2007 Oct; 4(2):101-9. PubMed ID: 17993784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery and characterization of an amidinotransferase involved in the modification of archaeal tRNA.
    Phillips G; Chikwana VM; Maxwell A; El-Yacoubi B; Swairjo MA; Iwata-Reuyl D; de Crécy-Lagard V
    J Biol Chem; 2010 Apr; 285(17):12706-13. PubMed ID: 20129918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pseudouridine and ribothymidine formation in the tRNA-like domain of turnip yellow mosaic virus RNA.
    Becker HF; Motorin Y; Florentz C; Giegé R; Grosjean H
    Nucleic Acids Res; 1998 Sep; 26(17):3991-7. PubMed ID: 9705510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of the conserved pseudouridine at position 55 in archaeal tRNA.
    Roovers M; Hale C; Tricot C; Terns MP; Terns RM; Grosjean H; Droogmans L
    Nucleic Acids Res; 2006; 34(15):4293-301. PubMed ID: 16920741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of protein Gar1 to the RNA-guided and RNA-independent rRNA:Ψ-synthase activities of the archaeal Cbf5 protein.
    Fujikane R; Behm-Ansmant I; Tillault AS; Loegler C; Igel-Bourguignon V; Marguet E; Forterre P; Branlant C; Motorin Y; Charpentier B
    Sci Rep; 2018 Sep; 8(1):13815. PubMed ID: 30218085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of m2G6 in Methanocaldococcus jannaschii tRNA catalyzed by the novel methyltransferase Trm14.
    Menezes S; Gaston KW; Krivos KL; Apolinario EE; Reich NO; Sowers KR; Limbach PA; Perona JJ
    Nucleic Acids Res; 2011 Sep; 39(17):7641-55. PubMed ID: 21693558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mammalian nuclear TRUB1, mitochondrial TRUB2, and cytoplasmic PUS10 produce conserved pseudouridine 55 in different sets of tRNA.
    Mukhopadhyay S; Deogharia M; Gupta R
    RNA; 2021 Jan; 27(1):66-79. PubMed ID: 33023933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.