BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

614 related articles for article (PubMed ID: 22274991)

  • 1. Comparison of end-point continuum-solvation methods for the calculation of protein-ligand binding free energies.
    Genheden S; Ryde U
    Proteins; 2012 May; 80(5):1326-42. PubMed ID: 22274991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease.
    Sham YY; Chu ZT; Tao H; Warshel A
    Proteins; 2000 Jun; 39(4):393-407. PubMed ID: 10813821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What determines the van der Waals coefficient beta in the LIE (linear interaction energy) method to estimate binding free energies using molecular dynamics simulations?
    Wang W; Wang J; Kollman PA
    Proteins; 1999 Feb; 34(3):395-402. PubMed ID: 10024025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An MM/3D-RISM approach for ligand binding affinities.
    Genheden S; Luchko T; Gusarov S; Kovalenko A; Ryde U
    J Phys Chem B; 2010 Jul; 114(25):8505-16. PubMed ID: 20524650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate predictions of nonpolar solvation free energies require explicit consideration of binding-site hydration.
    Genheden S; Mikulskis P; Hu L; Kongsted J; Söderhjelm P; Ryde U
    J Am Chem Soc; 2011 Aug; 133(33):13081-92. PubMed ID: 21728337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linear interaction energy models for beta-secretase (BACE) inhibitors: Role of van der Waals, electrostatic, and continuum-solvation terms.
    Tounge BA; Rajamani R; Baxter EW; Reitz AB; Reynolds CH
    J Mol Graph Model; 2006 May; 24(6):475-84. PubMed ID: 16293430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuum solvation models in the linear interaction energy method.
    Carlsson J; Andér M; Nervall M; Aqvist J
    J Phys Chem B; 2006 Jun; 110(24):12034-41. PubMed ID: 16800513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of the frozen atom approximation to the GB/SA continuum model for solvation free energy.
    Guvench O; Weiser J; Shenkin P; Kolossváry I; Still WC
    J Comput Chem; 2002 Jan; 23(2):214-21. PubMed ID: 11924735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational dependence of charges in protein simulations.
    Söderhjelm P; Ryde U
    J Comput Chem; 2009 Apr; 30(5):750-60. PubMed ID: 18773405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the Efficiency of the LIE and MM/GBSA Methods to Calculate Ligand-Binding Energies.
    Genheden S; Ryde U
    J Chem Theory Comput; 2011 Nov; 7(11):3768-78. PubMed ID: 26598269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvated interaction energy (SIE) for scoring protein-ligand binding affinities. 1. Exploring the parameter space.
    Naïm M; Bhat S; Rankin KN; Dennis S; Chowdhury SF; Siddiqi I; Drabik P; Sulea T; Bayly CI; Jakalian A; Purisima EO
    J Chem Inf Model; 2007; 47(1):122-33. PubMed ID: 17238257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimates of ligand-binding affinities supported by quantum mechanical methods.
    Söderhjelm P; Kongsted J; Genheden S; Ryde U
    Interdiscip Sci; 2010 Mar; 2(1):21-37. PubMed ID: 20640794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A semiempirical approach to ligand-binding affinities: dependence on the Hamiltonian and corrections.
    Mikulskis P; Genheden S; Wichmann K; Ryde U
    J Comput Chem; 2012 May; 33(12):1179-89. PubMed ID: 22396176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FACTS: Fast analytical continuum treatment of solvation.
    Haberthür U; Caflisch A
    J Comput Chem; 2008 Apr; 29(5):701-15. PubMed ID: 17918282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatic polarization makes a substantial contribution to the free energy of avidin-biotin binding.
    Tong Y; Mei Y; Li YL; Ji CG; Zhang JZ
    J Am Chem Soc; 2010 Apr; 132(14):5137-42. PubMed ID: 20302307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of atomic charge, solvation, entropy, and ligand protonation state on MM-PB(GB)SA binding energies of HIV protease.
    Oehme DP; Brownlee RT; Wilson DJ
    J Comput Chem; 2012 Dec; 33(32):2566-80. PubMed ID: 22915442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QM/MM-PBSA method to estimate free energies for reactions in proteins.
    Kaukonen M; Söderhjelm P; Heimdal J; Ryde U
    J Phys Chem B; 2008 Oct; 112(39):12537-48. PubMed ID: 18781715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Explicitly solvated ligand contribution to continuum solvation models for binding free energies: selectivity of theophylline binding to an RNA aptamer.
    Freedman H; Huynh LP; Le L; Cheatham TE; Tuszynski JA; Truong TN
    J Phys Chem B; 2010 Feb; 114(6):2227-37. PubMed ID: 20099932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model.
    Vorobjev YN; Almagro JC; Hermans J
    Proteins; 1998 Sep; 32(4):399-413. PubMed ID: 9726412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance comparison of generalized born and Poisson methods in the calculation of electrostatic solvation energies for protein structures.
    Feig M; Onufriev A; Lee MS; Im W; Case DA; Brooks CL
    J Comput Chem; 2004 Jan; 25(2):265-84. PubMed ID: 14648625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.