BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 22274999)

  • 41. The CB(1) cannabinoid receptor juxtamembrane C-terminal peptide confers activation to specific G proteins in brain.
    Mukhopadhyay S; McIntosh HH; Houston DB; Howlett AC
    Mol Pharmacol; 2000 Jan; 57(1):162-70. PubMed ID: 10617691
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Protean agonism at the dopamine D2 receptor: (S)-3-(3-hydroxyphenyl)-N-propylpiperidine is an agonist for activation of Go1 but an antagonist/inverse agonist for Gi1,Gi2, and Gi3.
    Lane JR; Powney B; Wise A; Rees S; Milligan G
    Mol Pharmacol; 2007 May; 71(5):1349-59. PubMed ID: 17287401
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dissociation of membrane-anchored heterotrimeric G-protein induced by G(α) subunit binding to GTP.
    Louet M; Charlier L; Martinez J; Floquet N
    J Chem Inf Model; 2012 Nov; 52(11):3022-7. PubMed ID: 23094679
    [TBL] [Abstract][Full Text] [Related]  

  • 44. G protein-coupled receptors and resistance to inhibitors of cholinesterase-8A (Ric-8A) both regulate the regulator of g protein signaling 14 RGS14·Gαi1 complex in live cells.
    Vellano CP; Maher EM; Hepler JR; Blumer JB
    J Biol Chem; 2011 Nov; 286(44):38659-38669. PubMed ID: 21880739
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A bifunctional Galphai/Galphas modulatory peptide that attenuates adenylyl cyclase activity.
    Johnston CA; Ramer JK; Blaesius R; Fredericks Z; Watts VJ; Siderovski DP
    FEBS Lett; 2005 Oct; 579(25):5746-50. PubMed ID: 16225870
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Palmitoylation modification of Galpha(o) depresses its susceptibility to GAP-43 activation.
    Yang H; Wan L; Song F; Wang M; Huang Y
    Int J Biochem Cell Biol; 2009 Jul; 41(7):1495-501. PubMed ID: 19146979
    [TBL] [Abstract][Full Text] [Related]  

  • 47. N terminus of type 5 adenylyl cyclase scaffolds Gs heterotrimer.
    Sadana R; Dascal N; Dessauer CW
    Mol Pharmacol; 2009 Dec; 76(6):1256-64. PubMed ID: 19783621
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Oxidized human neuroglobin acts as a heterotrimeric Galpha protein guanine nucleotide dissociation inhibitor.
    Wakasugi K; Nakano T; Morishima I
    J Biol Chem; 2003 Sep; 278(38):36505-12. PubMed ID: 12860983
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ric-8A catalyzes guanine nucleotide exchange on G alphai1 bound to the GPR/GoLoco exchange inhibitor AGS3.
    Thomas CJ; Tall GG; Adhikari A; Sprang SR
    J Biol Chem; 2008 Aug; 283(34):23150-60. PubMed ID: 18541531
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification of a novel site within G protein alpha subunits important for specificity of receptor-G protein interaction.
    Heydorn A; Ward RJ; Jorgensen R; Rosenkilde MM; Frimurer TM; Milligan G; Kostenis E
    Mol Pharmacol; 2004 Aug; 66(2):250-9. PubMed ID: 15266015
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A dominant-negative Galpha mutant that traps a stable rhodopsin-Galpha-GTP-betagamma complex.
    Ramachandran S; Cerione RA
    J Biol Chem; 2011 Apr; 286(14):12702-11. PubMed ID: 21285355
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The R6A-1 peptide binds to switch II of Galphai1 but is not a GDP-dissociation inhibitor.
    Willard FS; Siderovski DP
    Biochem Biophys Res Commun; 2006 Jan; 339(4):1107-12. PubMed ID: 16338227
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular basis of guanine nucleotide dissociation inhibitor activity of human neuroglobin by chemical cross-linking and mass spectrometry.
    Kitatsuji C; Kurogochi M; Nishimura S; Ishimori K; Wakasugi K
    J Mol Biol; 2007 Apr; 368(1):150-60. PubMed ID: 17337004
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Measurement of agonist-stimulated [35S]GTPgammaS binding to assess total G-protein and Galpha-subtype-specific activation by G-protein-coupled receptors.
    Dowling MR; Nahorski SR; Challiss RA
    Methods Mol Biol; 2004; 259():197-206. PubMed ID: 15250494
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Activator of G protein signaling 3 forms a complex with resistance to inhibitors of cholinesterase-8A without promoting nucleotide exchange on Gα(i3).
    Tse MK; Morris CJ; Zhang M; Wong YH
    Mol Cell Biochem; 2015 Mar; 401(1-2):27-38. PubMed ID: 25480567
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The nucleotide-free state of heterotrimeric G proteins α-subunit adopts a highly stable conformation.
    Andhirka SK; Vignesh R; Aradhyam GK
    FEBS J; 2017 Aug; 284(15):2464-2481. PubMed ID: 28627018
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structural basis for nucleotide exchange on G alpha i subunits and receptor coupling specificity.
    Johnston CA; Siderovski DP
    Proc Natl Acad Sci U S A; 2007 Feb; 104(6):2001-6. PubMed ID: 17264214
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fluorescence analysis of receptor-G protein interactions in cell membranes.
    Sarvazyan NA; Lim WK; Neubig RR
    Biochemistry; 2002 Oct; 41(42):12858-67. PubMed ID: 12379129
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dominant-negative Gα subunits are a mechanism of dysregulated heterotrimeric G protein signaling in human disease.
    Marivin A; Leyme A; Parag-Sharma K; DiGiacomo V; Cheung AY; Nguyen LT; Dominguez I; Garcia-Marcos M
    Sci Signal; 2016 Apr; 9(423):ra37. PubMed ID: 27072656
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Functional reconstitution of an atypical G protein heterotrimer and regulator of G protein signaling protein (RGS1) from Arabidopsis thaliana.
    Jones JC; Temple BR; Jones AM; Dohlman HG
    J Biol Chem; 2011 Apr; 286(15):13143-50. PubMed ID: 21325279
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.