These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 22275541)

  • 1. Proof of concept of an artificial muscle: theoretical model, numerical model, and hardware experiment.
    Haeufle DF; Günther M; Blickhan R; Schmitt S
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975336. PubMed ID: 22275541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical Hill-type muscle and stability: numerical model and application.
    Schmitt S; Günther M; Rupp T; Bayer A; Häufle D
    Comput Math Methods Med; 2013; 2013():570878. PubMed ID: 24319495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A macroscopic ansatz to deduce the Hill relation.
    Günther M; Schmitt S
    J Theor Biol; 2010 Apr; 263(4):407-18. PubMed ID: 20045704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nature as an engineer: one simple concept of a bio-inspired functional artificial muscle.
    Schmitt S; Haeufle DF; Blickhan R; Günther M
    Bioinspir Biomim; 2012 Sep; 7(3):036022. PubMed ID: 22728876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-frequency oscillations as a consequence of neglected serial damping in Hill-type muscle models.
    Günther M; Schmitt S; Wank V
    Biol Cybern; 2007 Jul; 97(1):63-79. PubMed ID: 17598125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of intrinsic muscle properties for stable hopping--stability is achieved by the force-velocity relation.
    Haeufle DF; Grimmer S; Seyfarth A
    Bioinspir Biomim; 2010 Mar; 5(1):16004. PubMed ID: 20185859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterisation of a phenomenological model for commercial pneumatic muscle actuators.
    Serres JL; Reynolds DB; Phillips CA; Gerschutz MJ; Repperger DW
    Comput Methods Biomech Biomed Engin; 2009 Aug; 12(4):423-30. PubMed ID: 19675979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinearities make a difference: comparison of two common Hill-type models with real muscle.
    Siebert T; Rode C; Herzog W; Till O; Blickhan R
    Biol Cybern; 2008 Feb; 98(2):133-43. PubMed ID: 18049823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Modelling of viscosity equivalent factor in the human muscle during muscular shortening].
    Martin A; Martin L; Morlon B
    C R Seances Soc Biol Fil; 1994; 188(4):379-85. PubMed ID: 7736260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A linear muscle model predicts the hyperbolic force-velocity relationship.
    Enderle JD; Engelken EJ; Stiles RN
    Biomed Sci Instrum; 1989; 25():149-53. PubMed ID: 2742961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spreading out muscle mass within a Hill-type model: a computer simulation study.
    Günther M; Röhrle O; Haeufle DF; Schmitt S
    Comput Math Methods Med; 2012; 2012():848630. PubMed ID: 23227110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical model of the frog skeletal muscle--analysis of non-linear mechanical properties.
    Akazawa K; Fujii K
    Front Med Biol Eng; 1989; 1(4):331-40. PubMed ID: 2486920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of force-activation, force-length, and force-velocity properties in isolated, electrically stimulated muscle.
    Durfee WK; Palmer KI
    IEEE Trans Biomed Eng; 1994 Mar; 41(3):205-16. PubMed ID: 8045573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling force-velocity relation in skeletal muscle isotonic contraction using an artificial neural network.
    Dariani S; Keshavarz M; Parviz M; Raoufy MR; Gharibzadeh S
    Biosystems; 2007; 90(2):529-34. PubMed ID: 17306448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Muscles as a chain of the Hill three element model for calculating asynchronicity of excitation in assessing the "active state" during isotonic contraction].
    Shygin VV
    Biofizika; 1989; 34(5):849-53. PubMed ID: 2611284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The inverted pendulum model of bipedal standing cannot be stabilized through direct feedback of force and contractile element length and velocity at realistic series elastic element stiffness.
    van Soest AJ; Rozendaal LA
    Biol Cybern; 2008 Jul; 99(1):29-41. PubMed ID: 18584202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cardiac muscle model relating sarcomere dynamics to calcium kinetics.
    Negroni JA; Lascano EC
    J Mol Cell Cardiol; 1996 May; 28(5):915-29. PubMed ID: 8762031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systolic modeling of the left ventricle as a mechatronic system: determination of myocardial fiber's sarcomere contractile characteristics and new performance indices.
    Ghista DN; Zhong L; Chua LP; Ng EY; Lim ST; Tan RS; Chua TS
    Mol Cell Biomech; 2005 Dec; 2(4):217-33. PubMed ID: 16705867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of artificial muscles based on electroactive ionomeric polymer-metal composites.
    Hirano LA; Escote MT; Martins-Filho LS; Mantovani GL; Scuracchio CH
    Artif Organs; 2011 May; 35(5):478-83. PubMed ID: 21595715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rigid body cable for virtual environments.
    Servin M; Lacoursière C
    IEEE Trans Vis Comput Graph; 2008; 14(4):783-96. PubMed ID: 18467754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.