These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 22275544)

  • 41. Design and implementation of a training strategy in chronic stroke with an arm robotic exoskeleton.
    Frisoli A; Sotgiu E; Procopio C; Bergamasco M; Rossi B; Chisari C
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975512. PubMed ID: 22275708
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Human-robot-interaction control for orthoses with pneumatic soft-actuators--concept and initial trails.
    Baiden D; Ivlev O
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650353. PubMed ID: 24187172
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Novel actuation design of a gait trainer with shadow leg approach.
    Meuleman J; Meuleman J; van Asseldonk EH; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650369. PubMed ID: 24187188
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Design and kinematic analysis of a novel upper limb exoskeleton for rehabilitation of stroke patients.
    Zeiaee A; Soltani-Zarrin R; Langari R; Tafreshi R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():759-764. PubMed ID: 28813911
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Design of a self-aligning 3-DOF actuated exoskeleton for diagnosis and training of wrist and forearm after stroke.
    Beekhuis JH; Westerveld AJ; van der Kooij H; Stienen AH
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650357. PubMed ID: 24187176
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Taking a lesson from patients' recovery strategies to optimize training during robot-aided rehabilitation.
    Colombo R; Sterpi I; Mazzone A; Delconte C; Pisano F
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):276-85. PubMed ID: 22623406
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Kinematic reconstruction of the human arm joints in robot-aided therapies with Hermes robot.
    Bertomeu-Motos A; Morales R; Lledo LD; Diez JA; Catalan JM; Garcia-Aracil N
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1190-3. PubMed ID: 26736479
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Towards brain-robot interfaces in stroke rehabilitation.
    Gomez-Rodriguez M; Grosse-Wentrup M; Hill J; Gharabaghi A; Scholkopf B; Peters J
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975385. PubMed ID: 22275589
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot.
    Ju MS; Lin CC; Lin DH; Hwang IS; Chen SM
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):349-58. PubMed ID: 16200758
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Stochastic estimation of human shoulder impedance with robots: an experimental design.
    Park K; Chang PH
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975461. PubMed ID: 22275659
    [TBL] [Abstract][Full Text] [Related]  

  • 51. ROBOT - Assisted Rehabilitation in Patients After Stroke.
    Kefaliakos A; Pliakos I; Kalokerinou A; Mechili A; Diomidous M
    Stud Health Technol Inform; 2014; 202():316. PubMed ID: 25000084
    [No Abstract]   [Full Text] [Related]  

  • 52. Use of the robot assisted gait therapy in rehabilitation of patients with stroke and spinal cord injury.
    Sale P; Franceschini M; Waldner A; Hesse S
    Eur J Phys Rehabil Med; 2012 Mar; 48(1):111-21. PubMed ID: 22543557
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Experiments and kinematics analysis of a hand rehabilitation exoskeleton with circuitous joints.
    Zhang F; Fu Y; Zhang Q; Wang S
    Biomed Mater Eng; 2015; 26 Suppl 1():S665-72. PubMed ID: 26406062
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Robot-assisted rehabilitation of hand function.
    Balasubramanian S; Klein J; Burdet E
    Curr Opin Neurol; 2010 Dec; 23(6):661-70. PubMed ID: 20852421
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Design of a rotary passive viscoelastic joint for wearable robots.
    Carpino G; Accoto D; Di Palo M; Tagliamonte NL; Sergi F; Guglielmelli E
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975356. PubMed ID: 22275560
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Design of a small animal biopsy robot.
    Bebek O; Hwang MJ; Fei B; Cavusoglu M
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5601-4. PubMed ID: 19163987
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Surgical robot system for single-port surgery with novel joint mechanism.
    Shin WH; Kwon DS
    IEEE Trans Biomed Eng; 2013 Apr; 60(4):937-44. PubMed ID: 23358948
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Estimation of Human Arm Joints Using Two Wireless Sensors in Robotic Rehabilitation Tasks.
    Bertomeu-Motos A; Lledó LD; Díez JA; Catalan JM; Ezquerro S; Badesa FJ; Garcia-Aracil N
    Sensors (Basel); 2015 Dec; 15(12):30571-83. PubMed ID: 26690160
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Universal haptic drive: a robot for arm and wrist rehabilitation.
    Oblak J; Cikajlo I; Matjacić Z
    IEEE Trans Neural Syst Rehabil Eng; 2010 Jun; 18(3):293-302. PubMed ID: 19846386
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke.
    Rong W; Tong KY; Hu XL; Ho SK
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.