These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 22275544)

  • 61. sEMG-based joint force control for an upper-limb power-assist exoskeleton robot.
    Li Z; Wang B; Sun F; Yang C; Xie Q; Zhang W
    IEEE J Biomed Health Inform; 2014 May; 18(3):1043-50. PubMed ID: 24235314
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A proof of concept study investigating the feasibility of combining iPAM robot assisted rehabilitation with functional electrical stimulation to deliver whole arm exercise in stroke survivors.
    O'Connor RJ; Jackson A; Makower SG; Cozens A; Levesley M
    J Med Eng Technol; 2014; 39(7):411-8. PubMed ID: 26414146
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A pediatric robotic thumb exoskeleton for at-home rehabilitation: the Isolated Orthosis for Thumb Actuation (IOTA).
    Aubin PM; Sallum H; Walsh C; Stirling L; Correia A
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650500. PubMed ID: 24187315
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Bimanual shoulder flexion system with surface electromyography for hemiplegic patients after stroke: A preliminary study.
    Park K; Kwon S; Kim J; Rim B
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975388. PubMed ID: 22275592
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A pilot study on the optimal speeds for passive wrist movements by a rehabilitation robot of stroke patients: A functional NIRS study.
    Bae SJ; Jang SH; Seo JP; Chang PH
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():7-12. PubMed ID: 28813785
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Design and control of RUPERT: a device for robotic upper extremity repetitive therapy.
    Sugar TG; He J; Koeneman EJ; Koeneman JB; Herman R; Huang H; Schultz RS; Herring DE; Wanberg J; Balasubramanian S; Swenson P; Ward JA
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):336-46. PubMed ID: 17894266
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A kinematic model of the shoulder complex to evaluate the arm-reachable workspace.
    Klopcar N; Tomsic M; Lenarcic J
    J Biomech; 2007; 40(1):86-91. PubMed ID: 16387308
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Towards a parameterizable exoskeleton for training of hand function after stroke.
    Weiss P; Heyer L; Munte TF; Heldmann M; Schweikard A; Maehle E
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650505. PubMed ID: 24187320
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Design and development of an affordable haptic robot with force-feedback and compliant actuation to improve therapy for patients with severe hemiparesis.
    Theriault A; Nagurka M; Johnson MJ
    IEEE Trans Haptics; 2014; 7(2):161-74. PubMed ID: 24968380
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Design and Evaluation of an Actuated Exoskeleton for Examining Motor Control in Stroke Thumb.
    Wang F; Jones CL; Shastri M; Qian K; Kamper DG; Sarkar N
    Adv Robot; 2016; 30(3):165-177. PubMed ID: 27672232
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Hybrid position and orientation tracking for a passive rehabilitation table-top robot.
    Wojewoda KK; Culmer PR; Gallagher JF; Jackson AE; Levesley MC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():702-707. PubMed ID: 28813902
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Effects of proximal and distal robot-assisted upper limb rehabilitation on chronic stroke recovery.
    Mazzoleni S; Sale P; Franceschini M; Bigazzi S; Carrozza MC; Dario P; Posteraro F
    NeuroRehabilitation; 2013; 33(1):33-9. PubMed ID: 23949024
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Human-mimetic soft robot joint for shock absorption through joint dislocation.
    Seo YS; Cho SJ; Lee JY; Park C; Kim U; Lee S; Kim B; Park C; Song SH
    Bioinspir Biomim; 2019 Nov; 15(1):016001. PubMed ID: 31546239
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Performing Complex Tasks by Users With Upper-Extremity Disabilities Using a 6-DOF Robotic Arm: A Study.
    Al-Halimi RK; Moussa M
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):686-693. PubMed ID: 28113593
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Review on design and control aspects of ankle rehabilitation robots.
    Jamwal PK; Hussain S; Xie SQ
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):93-101. PubMed ID: 24320195
    [TBL] [Abstract][Full Text] [Related]  

  • 76. An all-joint-control master device for single-port laparoscopic surgery robots.
    Shim S; Kang T; Ji D; Choi H; Joung S; Hong J
    Int J Comput Assist Radiol Surg; 2016 Aug; 11(8):1547-57. PubMed ID: 26872809
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Hiding robot inertia using resonance.
    Vallery H; Duschau-Wicke A; Riener R
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1271-4. PubMed ID: 21095916
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The effects of electromechanical wrist robot assistive system with neuromuscular electrical stimulation for stroke rehabilitation.
    Hu XL; Tong KY; Li R; Xue JJ; Ho SK; Chen P
    J Electromyogr Kinesiol; 2012 Jun; 22(3):431-9. PubMed ID: 22277205
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Stochastic estimation of arm mechanical impedance during robotic stroke rehabilitation.
    Palazzolo JJ; Ferraro M; Krebs HI; Lynch D; Volpe BT; Hogan N
    IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):94-103. PubMed ID: 17436881
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A damper driven robotic end-point manipulator for functional rehabilitation exercises after stroke.
    Westerveld AJ; Aalderink BJ; Hagedoorn W; Buijze M; Schouten AC; Kooij Hv
    IEEE Trans Biomed Eng; 2014 Oct; 61(10):2646-54. PubMed ID: 24860023
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.