These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 22275555)

  • 1. Assistance using adaptive oscillators: robustness to errors in the identification of the limb parameters.
    Rinderknecht MD; Delaloye FA; Crespi A; Ronsse R; Ijspeert AJ
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975351. PubMed ID: 22275555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human-robot synchrony: flexible assistance using adaptive oscillators.
    Ronsse R; Vitiello N; Lenzi T; van den Kieboom J; Carrozza MC; Ijspeert AJ
    IEEE Trans Biomed Eng; 2011 Apr; 58(4):1001-12. PubMed ID: 20977981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oscillator-based walking assistance: a model-free approach.
    Ronsse R; Koopman B; Vitiello N; Lenzi T; De Rossi SM; van den Kieboom J; van Asseldonk E; Carrozza MC; van der Kooij H; Ijspeert AJ
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975352. PubMed ID: 22275556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exoskeleton control for lower-extremity assistance based on adaptive frequency oscillators: adaptation of muscle activation and movement frequency.
    Aguirre-Ollinger G
    Proc Inst Mech Eng H; 2015 Jan; 229(1):52-68. PubMed ID: 25655955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oscillator-based assistance of cyclical movements: model-based and model-free approaches.
    Ronsse R; Lenzi T; Vitiello N; Koopman B; van Asseldonk E; De Rossi SM; van den Kieboom J; van der Kooij H; Carrozza MC; Ijspeert AJ
    Med Biol Eng Comput; 2011 Oct; 49(10):1173-85. PubMed ID: 21881902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive Control of Exoskeleton Robots for Periodic Assistive Behaviours Based on EMG Feedback Minimisation.
    Peternel L; Noda T; Petrič T; Ude A; Morimoto J; Babič J
    PLoS One; 2016; 11(2):e0148942. PubMed ID: 26881743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Position and torque tracking: series elastic actuation versus model-based-controlled hydraulic actuation.
    Otten A; van Vuuren W; Stienen A; van Asseldonk E; Schouten A; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975456. PubMed ID: 22275654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oscillators and crank turning: exploiting natural dynamics with a humanoid robot arm.
    Williamson MM
    Philos Trans A Math Phys Eng Sci; 2003 Oct; 361(1811):2207-23. PubMed ID: 14599316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinematic design to improve ergonomics in human machine interaction.
    Schiele A; van der Helm FC
    IEEE Trans Neural Syst Rehabil Eng; 2006 Dec; 14(4):456-69. PubMed ID: 17190037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive control of 5 DOF upper-limb exoskeleton robot with improved safety.
    Kang HB; Wang JH
    ISA Trans; 2013 Nov; 52(6):844-52. PubMed ID: 23906739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robots with a gentle touch: advances in assistive robotics and prosthetics.
    Harwin WS
    Technol Health Care; 1999; 7(6):411-7. PubMed ID: 10665674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time myoprocessors for a neural controlled powered exoskeleton arm.
    Cavallaro EE; Rosen J; Perry JC; Burns S
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2387-96. PubMed ID: 17073345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inter-joint coupling strategy during adaptation to novel viscous loads in human arm movement.
    Debicki DB; Gribble PL
    J Neurophysiol; 2004 Aug; 92(2):754-65. PubMed ID: 15056688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of elbow-joints misalignment in upper-limb exoskeleton.
    Malosio M; Pedrocchi N; Vicentini F; Tosatti LM
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975393. PubMed ID: 22275597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fractional fuzzy adaptive sliding-mode control of a 2-DOF direct-drive robot arm.
    Efe MO
    IEEE Trans Syst Man Cybern B Cybern; 2008 Dec; 38(6):1561-70. PubMed ID: 19022726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel compliant actuator for wearable robotics applications.
    Claros M; Soto R; Rodríguez JJ; Cantú C; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2854-7. PubMed ID: 24110322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time haptic-teleoperated robotic system for motor control analysis.
    Shull PB; Gonzalez RV
    J Neurosci Methods; 2006 Mar; 151(2):194-9. PubMed ID: 16153712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chapter 8--challenging the adaptive capacity of rhythmic movement control: from denervation to force field adaptation.
    Bouyer LJ
    Prog Brain Res; 2011; 188():119-34. PubMed ID: 21333806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a rotary passive viscoelastic joint for wearable robots.
    Carpino G; Accoto D; Di Palo M; Tagliamonte NL; Sergi F; Guglielmelli E
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975356. PubMed ID: 22275560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling, design, and optimization of Mindwalker series elastic joint.
    Wang S; Meijneke C; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650381. PubMed ID: 24187200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.