These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 22275556)

  • 1. Oscillator-based walking assistance: a model-free approach.
    Ronsse R; Koopman B; Vitiello N; Lenzi T; De Rossi SM; van den Kieboom J; van Asseldonk E; Carrozza MC; van der Kooij H; Ijspeert AJ
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975352. PubMed ID: 22275556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human-robot synchrony: flexible assistance using adaptive oscillators.
    Ronsse R; Vitiello N; Lenzi T; van den Kieboom J; Carrozza MC; Ijspeert AJ
    IEEE Trans Biomed Eng; 2011 Apr; 58(4):1001-12. PubMed ID: 20977981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assistance using adaptive oscillators: robustness to errors in the identification of the limb parameters.
    Rinderknecht MD; Delaloye FA; Crespi A; Ronsse R; Ijspeert AJ
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975351. PubMed ID: 22275555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. INS/EKF-based stride length, height and direction intent detection for walking assistance robots.
    Brescianini D; Jung JY; Jang IH; Park HS; Riener R
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975363. PubMed ID: 22275567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton.
    Agrawal SK; Banala SK; Fattah A; Sangwan V; Krishnamoorthy V; Scholz JP; Hsu WL
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):410-20. PubMed ID: 17894273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oscillator-based assistance of cyclical movements: model-based and model-free approaches.
    Ronsse R; Lenzi T; Vitiello N; Koopman B; van Asseldonk E; De Rossi SM; van den Kieboom J; van der Kooij H; Carrozza MC; Ijspeert AJ
    Med Biol Eng Comput; 2011 Oct; 49(10):1173-85. PubMed ID: 21881902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A passive exoskeleton with artificial tendons: design and experimental evaluation.
    van Dijk W; van der Kooij H; Hekman E
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975470. PubMed ID: 22275668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A lower-limb power-assist robot with perception-assist.
    Hayashi Y; Kiguchi K
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975445. PubMed ID: 22275645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanics and energetics of level walking with powered ankle exoskeletons.
    Sawicki GS; Ferris DP
    J Exp Biol; 2008 May; 211(Pt 9):1402-13. PubMed ID: 18424674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of robotic knee exoskeleton on human energy expenditure.
    Gams A; Petric T; Debevec T; Babic J
    IEEE Trans Biomed Eng; 2013 Jun; 60(6):1636-44. PubMed ID: 23340585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning to walk with a robotic ankle exoskeleton.
    Gordon KE; Ferris DP
    J Biomech; 2007; 40(12):2636-44. PubMed ID: 17275829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An embedded human motion capture system for an assistive walking robot.
    Zong C; Clady X; Chetouani M
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975439. PubMed ID: 22275639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury.
    Israel JF; Campbell DD; Kahn JH; Hornby TG
    Phys Ther; 2006 Nov; 86(11):1466-78. PubMed ID: 17079746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel method for automatic treadmill speed adaptation.
    von Zitzewitz J; Bernhardt M; Riener R
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):401-9. PubMed ID: 17894272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spring uses in exoskeleton actuation design.
    Wang S; van Dijk W; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975471. PubMed ID: 22275669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic adaptive onset detection using an electromyogram with individual difference for control of a meal assistance robot.
    Zhang X; Wang X; Wang B; Sugi T; Nakamura M
    J Med Eng Technol; 2009; 33(4):322-7. PubMed ID: 19384708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inertia compensation control of a one-degree-of-freedom exoskeleton for lower-limb assistance: initial experiments.
    Aguirre-Ollinger G; Colgate JE; Peshkin MA; Goswami A
    IEEE Trans Neural Syst Rehabil Eng; 2012 Jan; 20(1):68-77. PubMed ID: 22271684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel compliant actuator for wearable robotics applications.
    Claros M; Soto R; Rodríguez JJ; Cantú C; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2854-7. PubMed ID: 24110322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinematic trajectories while walking within the Lokomat robotic gait-orthosis.
    Hidler J; Wisman W; Neckel N
    Clin Biomech (Bristol, Avon); 2008 Dec; 23(10):1251-9. PubMed ID: 18849098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control system design of a 3-DOF upper limbs rehabilitation robot.
    Denève A; Moughamir S; Afilal L; Zaytoon J
    Comput Methods Programs Biomed; 2008 Feb; 89(2):202-14. PubMed ID: 17881080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.