BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 22275557)

  • 1. Synchronized walking coordination for impact-less footpad contact of an overground gait rehabilitation system: NaTUre-gaits.
    Wang P; Low KH; Tow A
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975353. PubMed ID: 22275557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robot-assisted walking vs overground walking in stroke patients: an evaluation of muscle activity.
    Coenen P; van Werven G; van Nunen MP; Van Dieën JH; Gerrits KH; Janssen TW
    J Rehabil Med; 2012 Apr; 44(4):331-7. PubMed ID: 22453772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of robot assisted gait training on temporal-spatial characteristics of people with spinal cord injuries: A systematic review.
    Hayes SC; James Wilcox CR; Forbes White HS; Vanicek N
    J Spinal Cord Med; 2018 Sep; 41(5):529-543. PubMed ID: 29400988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hardware Development and Locomotion Control Strategy for an Over-Ground Gait Trainer: NaTUre-Gaits.
    Luu TP; Low KH; Qu X; Lim HB; Hoon KH
    IEEE J Transl Eng Health Med; 2014; 2():2100209. PubMed ID: 27170876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is body-weight-supported treadmill training or robotic-assisted gait training superior to overground gait training and other forms of physiotherapy in people with spinal cord injury? A systematic review.
    Mehrholz J; Harvey LA; Thomas S; Elsner B
    Spinal Cord; 2017 Aug; 55(8):722-729. PubMed ID: 28398300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robotic gait rehabilitation and substitution devices in neurological disorders: where are we now?
    Calabrò RS; Cacciola A; Bertè F; Manuli A; Leo A; Bramanti A; Naro A; Milardi D; Bramanti P
    Neurol Sci; 2016 Apr; 37(4):503-14. PubMed ID: 26781943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integrated gait rehabilitation training based on Functional Electrical Stimulation cycling and overground robotic exoskeleton in complete spinal cord injury patients: Preliminary results.
    Mazzoleni S; Battini E; Rustici A; Stampacchia G
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():289-293. PubMed ID: 28813833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of the robot assisted gait therapy in rehabilitation of patients with stroke and spinal cord injury.
    Sale P; Franceschini M; Waldner A; Hesse S
    Eur J Phys Rehabil Med; 2012 Mar; 48(1):111-21. PubMed ID: 22543557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Treadmill vs. overground walking: different response to physical interaction.
    Ochoa J; Sternad D; Hogan N
    J Neurophysiol; 2017 Oct; 118(4):2089-2102. PubMed ID: 28701533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and evaluation of Mina: a robotic orthosis for paraplegics.
    Neuhaus PD; Noorden JH; Craig TJ; Torres T; Kirschbaum J; Pratt JE
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975468. PubMed ID: 22275666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and evaluation of a prototype gait orthosis for early rehabilitation of walking.
    Fang J; Vuckovic A; Galen S; Cossar C; Conway BA; Hunt KJ
    Technol Health Care; 2014 Jan; 22(2):273-88. PubMed ID: 24898868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lokomat robotic-assisted versus overground training within 3 to 6 months of incomplete spinal cord lesion: randomized controlled trial.
    Alcobendas-Maestro M; Esclarín-Ruz A; Casado-López RM; Muñoz-González A; Pérez-Mateos G; González-Valdizán E; Martín JL
    Neurorehabil Neural Repair; 2012; 26(9):1058-63. PubMed ID: 22699827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of weight off-loading level over body-weight supported locomotion training.
    Wang P; Low KH; Lim PA; McGregor AH
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975354. PubMed ID: 22275558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patient adaptive control of end-effector based gait rehabilitation devices using a haptic control framework.
    Hussein S; Kruger J
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975451. PubMed ID: 22275649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Timed Frontal Plane Pelvic Moments During Overground Walking With a Mobile TPAD System.
    Stramel DM; Prado A; Roy SH; Kim H; Agrawal SK
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():48-57. PubMed ID: 36264728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multidirectional transparent support for overground gait training.
    Vallery H; Lutz P; von Zitzewitz J; Rauter G; Fritschi M; Everarts C; Ronsse R; Curt A; Bolliger M
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650512. PubMed ID: 24187327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Training with robot-applied resistance in people with motor-incomplete spinal cord injury: Pilot study.
    Lam T; Pauhl K; Ferguson A; Malik RN; ; Krassioukov A; Eng JJ
    J Rehabil Res Dev; 2015; 52(1):113-29. PubMed ID: 26230667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of robotic gait training on cardiorespiratory system in incomplete spinal cord injury.
    Hoekstra F; van Nunen MP; Gerrits KH; Stolwijk-Swüste JM; Crins MH; Janssen TW
    J Rehabil Res Dev; 2013; 50(10):1411-22. PubMed ID: 24699976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The immediate effects of robot-assistance on energy consumption and cardiorespiratory load during walking compared to walking without robot-assistance: a systematic review.
    Lefeber N; Swinnen E; Kerckhofs E
    Disabil Rehabil Assist Technol; 2017 Oct; 12(7):657-671. PubMed ID: 27762641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive position anticipation in a support robot for overground gait training enhances transparency.
    Everarts C; Vallery H; Bolliger M; Ronsse R
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650483. PubMed ID: 24187300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.