These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 22275560)

  • 41. Dynamical network interactions in distributed control of robots.
    Buscarino A; Fortuna L; Frasca M; Rizzo A
    Chaos; 2006 Mar; 16(1):015116. PubMed ID: 16599782
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Kinematic design to improve ergonomics in human machine interaction.
    Schiele A; van der Helm FC
    IEEE Trans Neural Syst Rehabil Eng; 2006 Dec; 14(4):456-69. PubMed ID: 17190037
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Control system design of a 3-DOF upper limbs rehabilitation robot.
    Denève A; Moughamir S; Afilal L; Zaytoon J
    Comput Methods Programs Biomed; 2008 Feb; 89(2):202-14. PubMed ID: 17881080
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A robotic model to investigate human motor control.
    Lenzi T; Vitiello N; McIntyre J; Roccella S; Carrozza MC
    Biol Cybern; 2011 Jul; 105(1):1-19. PubMed ID: 21769741
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Humanoid robot Lola: design and walking control.
    Buschmann T; Lohmeier S; Ulbrich H
    J Physiol Paris; 2009; 103(3-5):141-8. PubMed ID: 19665558
    [TBL] [Abstract][Full Text] [Related]  

  • 46. HiMoP: A three-component architecture to create more human-acceptable social-assistive robots : Motivational architecture for assistive robots.
    Rodríguez-Lera FJ; Matellán-Olivera V; Conde-González MÁ; Martín-Rico F
    Cogn Process; 2018 May; 19(2):233-244. PubMed ID: 29305760
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Codevelopmental learning between human and humanoid robot using a dynamic neural-network model.
    Tani J; Nishimoto R; Namikawa J; Ito M
    IEEE Trans Syst Man Cybern B Cybern; 2008 Feb; 38(1):43-59. PubMed ID: 18270081
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development of anthropomorphic multi-D.O.F. master-slave arm for mutual telexistence.
    Tadakuma R; Asahara Y; Kajimoto H; Kawakami N; Tachi S
    IEEE Trans Vis Comput Graph; 2005; 11(6):626-36. PubMed ID: 16270856
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Encouraging behavioral diversity in evolutionary robotics: an empirical study.
    Mouret JB; Doncieux S
    Evol Comput; 2012; 20(1):91-133. PubMed ID: 21838553
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Robots in the operating theatre--chances and challenges.
    Korb W; Marmulla R; Raczkowsky J; Mühling J; Hassfeld S
    Int J Oral Maxillofac Surg; 2004 Dec; 33(8):721-32. PubMed ID: 15556318
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Controlling chaotic robots with kinematical redundancy.
    Li L; Liu Z; Zhang D; Zhang H
    Chaos; 2006 Mar; 16(1):013132. PubMed ID: 16599763
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Mobile autonomous robots-Possibilities and limits].
    Maehle E; Brockmann W; Walthelm A
    Zentralbl Chir; 2002 Feb; 127(2):134-40. PubMed ID: 11894217
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A lower-limb power-assist robot with perception-assist.
    Hayashi Y; Kiguchi K
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975445. PubMed ID: 22275645
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Imitation of Dynamic Walking With BSN for Humanoid Robot.
    Teachasrisaksakul K; Zhang ZQ; Yang GZ; Lo B
    IEEE J Biomed Health Inform; 2015 May; 19(3):794-802. PubMed ID: 25935051
    [TBL] [Abstract][Full Text] [Related]  

  • 55. HazBot: Development of a telemanipulator robot with haptics for emergency response.
    Jurmain JC; Blancero AJ; Geiling JA; Bennett A; Jones C; Berkley J; Vollenweider M; Minsky M; Bowersox JC; Rosen JM
    Am J Disaster Med; 2008; 3(2):87-97. PubMed ID: 18522250
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot.
    Ju MS; Lin CC; Lin DH; Hwang IS; Chen SM
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):349-58. PubMed ID: 16200758
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Assistance using adaptive oscillators: robustness to errors in the identification of the limb parameters.
    Rinderknecht MD; Delaloye FA; Crespi A; Ronsse R; Ijspeert AJ
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975351. PubMed ID: 22275555
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biomechanical considerations in the design of lower limb exoskeletons.
    Cenciarini M; Dollar AM
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975366. PubMed ID: 22275570
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Designing robots for the elderly: appearance issue and beyond.
    Wu YH; Fassert C; Rigaud AS
    Arch Gerontol Geriatr; 2012; 54(1):121-6. PubMed ID: 21349593
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Interactive robots in experimental biology.
    Krause J; Winfield AF; Deneubourg JL
    Trends Ecol Evol; 2011 Jul; 26(7):369-75. PubMed ID: 21496942
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.