BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 22275561)

  • 1. A new dynamic model of the manual wheelchair for straight and curvilinear propulsion.
    Chénier F; Bigras P; Aissaoui R
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975357. PubMed ID: 22275561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new dynamic model of the wheelchair propulsion on straight and curvilinear level-ground paths.
    Chénier F; Bigras P; Aissaoui R
    Comput Methods Biomech Biomed Engin; 2015 Aug; 18(10):1031-1043. PubMed ID: 24484386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of rear wheel camber in manual wheelchair propulsion.
    Veeger D; van der Woude LH; Rozendal RH
    J Rehabil Res Dev; 1989; 26(2):37-46. PubMed ID: 2724151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of user's actions on rolling resistance and wheelchair stability during handrim wheelchair propulsion in the field.
    Sauret C; Vaslin P; Lavaste F; de Saint Remy N; Cid M
    Med Eng Phys; 2013 Mar; 35(3):289-97. PubMed ID: 23200111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic calibration of a wheelchair dynamometer.
    DiGiovine CP; Cooper RA; Boninger ML
    J Rehabil Res Dev; 2001; 38(1):41-55. PubMed ID: 11322470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A five-wheel wheelchair with an active-caster drive system.
    Munakata Y; Tanaka A; Wada M
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650438. PubMed ID: 24187256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Three Versions of a Wheelchair Ergometer for Curvilinear Manual Wheelchair Propulsion Using Virtual Reality.
    Salimi Z; Ferguson-Pell M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jun; 26(6):1215-1222. PubMed ID: 29877846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manual wheelchair propulsion patterns on natural surfaces during start-up propulsion.
    Koontz AM; Roche BM; Collinger JL; Cooper RA; Boninger ML
    Arch Phys Med Rehabil; 2009 Nov; 90(11):1916-23. PubMed ID: 19887217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of Mass and Weight Distribution on Manual Wheelchair Propulsion Torque.
    Sprigle S; Huang M
    Assist Technol; 2015; 27(4):226-35; quiz 236-7. PubMed ID: 26691562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reliability of biomechanical variables during wheelchair ergometry testing.
    Finley MA; Rodgers MM; Rasch EK; McQuade KJ; Keyser RE
    J Rehabil Res Dev; 2002; 39(1):73-81. PubMed ID: 11926329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of wheel and hand-rim size on submaximal propulsion in wheelchair athletes.
    Mason BS; Van Der Woude LH; Tolfrey K; Lenton JP; Goosey-Tolfrey VL
    Med Sci Sports Exerc; 2012 Jan; 44(1):126-34. PubMed ID: 21701409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shoulder biomechanics during the push phase of wheelchair propulsion: a multisite study of persons with paraplegia.
    Collinger JL; Boninger ML; Koontz AM; Price R; Sisto SA; Tolerico ML; Cooper RA
    Arch Phys Med Rehabil; 2008 Apr; 89(4):667-76. PubMed ID: 18373997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is effective force application in handrim wheelchair propulsion also efficient?
    Bregman DJ; van Drongelen S; Veeger HE
    Clin Biomech (Bristol, Avon); 2009 Jan; 24(1):13-9. PubMed ID: 18990473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new procedure to determine external power output during handrim wheelchair propulsion on a roller ergometer: a reliability study.
    Theisen D; Francaux M; Fayt A; Sturbois X
    Int J Sports Med; 1996 Nov; 17(8):564-71. PubMed ID: 8973976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling manual wheelchair propulsion cost during straight and curvilinear trajectories.
    Misch J; Huang M; Sprigle S
    PLoS One; 2020; 15(6):e0234742. PubMed ID: 32555594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring Handrim Wheelchair Propulsion in the Lab: A Critical Analysis of Stationary Ergometers.
    de Klerk R; Vegter RJK; Goosey-Tolfrey VL; Mason BS; Lenton JP; Veeger DHEJ; van der Woude LHV
    IEEE Rev Biomed Eng; 2020; 13():199-211. PubMed ID: 31675342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanics of wheelchair propulsion by able-bodied subjects.
    Ruggles DL; Cahalan T; An KN
    Arch Phys Med Rehabil; 1994 May; 75(5):540-4. PubMed ID: 8185446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An instrumented wheel system for measuring 3-D pushrim kinetics during racing wheelchair propulsion.
    Limroongreungrat W; Wang YT; Chang LS; Geil MD; Johnson JT
    Res Sports Med; 2009; 17(3):182-94. PubMed ID: 19731178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directional instability of rear caster wheelchairs.
    Collins TJ; Kauzlarich JJ
    J Rehabil Res Dev; 1988; 25(3):1-18. PubMed ID: 3411523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between resultant force at the pushrim and the net shoulder joint moments during manual wheelchair propulsion in elderly persons.
    Desroches G; Aissaoui R; Bourbonnais D
    Arch Phys Med Rehabil; 2008 Jun; 89(6):1155-61. PubMed ID: 18503814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.