These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 22275563)

  • 1. Tongue motion-based operation of support system for paralyzed patients.
    Takahashi J; Suezawa S; Hasegawa Y; Sankai Y
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975359. PubMed ID: 22275563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experiment on a novel user input for computer interface utilizing tongue input for the severely disabled.
    Kencana AP; Heng J
    Disabil Rehabil Assist Technol; 2008 Nov; 3(6):351-9. PubMed ID: 19117196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hands-free human computer interaction via an electromyogram-based classification algorithm.
    Chin C; Barreto A; Li C; Zhai J
    Biomed Sci Instrum; 2005; 41():31-6. PubMed ID: 15850078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noninvasive tongue-motion controlled computer mouse for the disabled.
    Chou CH; Hwang YS; Chen CC; Chen SC; Chou SW; Chen YL
    Technol Health Care; 2016 May; 24(3):401-8. PubMed ID: 26835730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced real-time cursor control algorithm, based on the spectral analysis of electromyograms.
    Chin CA; Barreto A; Adjouadi M
    Biomed Sci Instrum; 2006; 42():249-54. PubMed ID: 16817616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and quantitative performance evaluation of a noninvasive EMG computer interface.
    Choi C; Micera S; Carpaneto J; Kim J
    IEEE Trans Biomed Eng; 2009 Jan; 56(1):188-91. PubMed ID: 19224732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects.
    Blankertz B; Dornhege G; Krauledat M; Müller KR; Curio G
    Neuroimage; 2007 Aug; 37(2):539-50. PubMed ID: 17475513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glossokinetic potential based tongue-machine interface for 1-D extraction.
    Gorur K; Bozkurt MR; Bascil MS; Temurtas F
    Australas Phys Eng Sci Med; 2018 Jun; 41(2):379-391. PubMed ID: 29633174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing range of motion to evaluate the adverse effects of ill-fitting cervical orthoses.
    Bell KM; Frazier EC; Shively CM; Hartman RA; Ulibarri JC; Lee JY; Kang JD; Donaldson WF
    Spine J; 2009 Mar; 9(3):225-31. PubMed ID: 18504164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards a magnetic localization system for 3-D tracking of tongue movements in speech-language therapy.
    Cheng C; Huo X; Ghovanloo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():563-6. PubMed ID: 19964478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of tilt sensors in human-computer mouse interface for people with disabilities.
    Chen YL
    IEEE Trans Neural Syst Rehabil Eng; 2001 Sep; 9(3):289-94. PubMed ID: 11561665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An oral tactile interface for blind navigation.
    Tang H; Beebe DJ
    IEEE Trans Neural Syst Rehabil Eng; 2006 Mar; 14(1):116-23. PubMed ID: 16562639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selection and parameterization of cortical neurons for neuroprosthetic control.
    Wahnoun R; He J; Helms Tillery SI
    J Neural Eng; 2006 Jun; 3(2):162-71. PubMed ID: 16705272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tongue-rudder: a glossokinetic-potential-based tongue-machine interface.
    Nam Y; Zhao Q; Cichocki A; Choi S
    IEEE Trans Biomed Eng; 2012 Jan; 59(1):290-9. PubMed ID: 22049361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. P300 Chinese input system based on Bayesian LDA.
    Jin J; Allison BZ; Brunner C; Wang B; Wang X; Zhang J; Neuper C; Pfurtscheller G
    Biomed Tech (Berl); 2010 Feb; 55(1):5-18. PubMed ID: 20128741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive software for head-operated computer controls.
    LoPresti EF; Brienza DM
    IEEE Trans Neural Syst Rehabil Eng; 2004 Mar; 12(1):102-11. PubMed ID: 15068193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and evaluation of a assistive computer interface by SEMG for individuals with spinal cord injuries.
    Choi C; Rim B; Kim J
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975386. PubMed ID: 22275590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Character activation time prediction model for tongue-typing: adaptation of Fitts's law.
    Caltenco HA; Lontis ER; Struijk JJ; Lund ME; Struijk LN
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():551-4. PubMed ID: 19963972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Error-Free Text Typing Performance of an Inductive Intra-Oral Tongue Computer Interface for Severely Disabled Individuals.
    Andreasen Struijk LNS; Bentsen B; Gaihede M; Lontis ER
    IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):2094-2104. PubMed ID: 28541213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.