These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 22275579)

  • 1. Adaptive regulation of assistance 'as needed' in robot-assisted motor skill learning and neuro-rehabilitation.
    Squeri V; Basteris A; Sanguineti V
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975375. PubMed ID: 22275579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward 'optimal' schemes of robot assistance to facilitate motor skill learning.
    Basteris A; Sanguineti V
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2355-8. PubMed ID: 22254814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed.
    Emken JL; Benitez R; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2007 Mar; 4():8. PubMed ID: 17391527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Taking a lesson from patients' recovery strategies to optimize training during robot-aided rehabilitation.
    Colombo R; Sterpi I; Mazzone A; Delconte C; Pisano F
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):276-85. PubMed ID: 22623406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motor skill learning and neuro-rehabilitation.
    Burdet E; Sanguineti V; Heuer H; Popović DB
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):237-8. PubMed ID: 22792550
    [No Abstract]   [Full Text] [Related]  

  • 6. Effects of robotically modulating kinematic variability on motor skill learning and motivation.
    Duarte JE; Reinkensmeyer DJ
    J Neurophysiol; 2015 Apr; 113(7):2682-91. PubMed ID: 25673732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motor imagery facilitates force field learning.
    Anwar MN; Tomi N; Ito K
    Brain Res; 2011 Jun; 1395():21-9. PubMed ID: 21555118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving motor skill transfer during dyadic robot training through the modulation of the expert role.
    Galofaro E; Morasso P; Zenzeri J
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():78-83. PubMed ID: 28813797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assist-as-needed robotic trainer based on reinforcement learning and its application to dart-throwing.
    Obayashi C; Tamei T; Shibata T
    Neural Netw; 2014 May; 53():52-60. PubMed ID: 24531040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating Motor Skill Learning Processes with a Robotic Manipulandum.
    Leemburg S; Iijima M; Lambercy O; Nallet-Khosrofian L; Gassert R; Luft A
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28287570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theories and control models and motor learning: clinical applications in neuro-rehabilitation.
    Cano-de-la-Cuerda R; Molero-Sánchez A; Carratalá-Tejada M; Alguacil-Diego IM; Molina-Rueda F; Miangolarra-Page JC; Torricelli D
    Neurologia; 2015; 30(1):32-41. PubMed ID: 22341985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Density Electromyography and Motor Skill Learning for Robust Long-Term Control of a 7-DoF Robot Arm.
    Ison M; Vujaklija I; Whitsell B; Farina D; Artemiadis P
    IEEE Trans Neural Syst Rehabil Eng; 2016 Apr; 24(4):424-33. PubMed ID: 25838524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interacting Learning Processes during Skill Acquisition: Learning to control with gradually changing system dynamics.
    Ludolph N; Giese MA; Ilg W
    Sci Rep; 2017 Oct; 7(1):13191. PubMed ID: 29038562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy-efficient and damage-recovery slithering gait design for a snake-like robot based on reinforcement learning and inverse reinforcement learning.
    Bing Z; Lemke C; Cheng L; Huang K; Knoll A
    Neural Netw; 2020 Sep; 129():323-333. PubMed ID: 32593929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The BioMotionBot: a robotic device for applications in human motor learning and rehabilitation.
    Bartenbach V; Sander C; Pöschl M; Wilging K; Nelius T; Doll F; Burger W; Stockinger C; Focke A; Stein T
    J Neurosci Methods; 2013 Mar; 213(2):282-97. PubMed ID: 23276545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sub-processes of motor learning revealed by a robotic manipulandum for rodents.
    Lambercy O; Schubring-Giese M; Vigaru B; Gassert R; Luft AR; Hosp JA
    Behav Brain Res; 2015 Feb; 278():569-76. PubMed ID: 25446755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Bayesian Developmental Approach to Robotic Goal-Based Imitation Learning.
    Chung MJ; Friesen AL; Fox D; Meltzoff AN; Rao RP
    PLoS One; 2015; 10(11):e0141965. PubMed ID: 26536366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning and transfer of complex motor skills in virtual reality: a perspective review.
    Levac DE; Huber ME; Sternad D
    J Neuroeng Rehabil; 2019 Oct; 16(1):121. PubMed ID: 31627755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural correlates of motor learning and performance in a virtual ball putting task.
    Pitto L; Novakovic V; Basteris A; Sanguineti V
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975487. PubMed ID: 22275684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Persistence of reduced neuromotor noise in long-term motor skill learning.
    Huber ME; Kuznetsov N; Sternad D
    J Neurophysiol; 2016 Dec; 116(6):2922-2935. PubMed ID: 27683883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.