These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 22275593)
1. Robotic arm skate for stroke rehabilitation. Wong CK; Jordan K; King M IEEE Int Conf Rehabil Robot; 2011; 2011():5975389. PubMed ID: 22275593 [TBL] [Abstract][Full Text] [Related]
2. Design and control of RUPERT: a device for robotic upper extremity repetitive therapy. Sugar TG; He J; Koeneman EJ; Koeneman JB; Herman R; Huang H; Schultz RS; Herring DE; Wanberg J; Balasubramanian S; Swenson P; Ward JA IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):336-46. PubMed ID: 17894266 [TBL] [Abstract][Full Text] [Related]
3. Coordinated control of assistive robotic devices for activities of daily living tasks. Erol D; Sarkar N IEEE Trans Neural Syst Rehabil Eng; 2008 Jun; 16(3):278-85. PubMed ID: 18586607 [TBL] [Abstract][Full Text] [Related]
4. Home-based Computer Assisted Arm Rehabilitation (hCAAR) robotic device for upper limb exercise after stroke: results of a feasibility study in home setting. Sivan M; Gallagher J; Makower S; Keeling D; Bhakta B; O'Connor RJ; Levesley M J Neuroeng Rehabil; 2014 Dec; 11():163. PubMed ID: 25495889 [TBL] [Abstract][Full Text] [Related]
5. Design & control of a 3D stroke rehabilitation platform. Cai Z; Tong D; Meadmore KL; Freeman CT; Hughes AM; Rogers E; Burridge JH IEEE Int Conf Rehabil Robot; 2011; 2011():5975412. PubMed ID: 22275615 [TBL] [Abstract][Full Text] [Related]
6. Electroencephalographic markers of robot-aided therapy in stroke patients for the evaluation of upper limb rehabilitation. Sale P; Infarinato F; Del Percio C; Lizio R; Babiloni C; Foti C; Franceschini M Int J Rehabil Res; 2015 Dec; 38(4):294-305. PubMed ID: 26317486 [TBL] [Abstract][Full Text] [Related]
8. Use of a robotic device for the rehabilitation of severe upper limb paresis in subacute stroke: exploration of patient/robot interactions and the motor recovery process. Duret C; Courtial O; Grosmaire AG; Hutin E Biomed Res Int; 2015; 2015():482389. PubMed ID: 25821804 [TBL] [Abstract][Full Text] [Related]
9. Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment. Sanchez RJ; Liu J; Rao S; Shah P; Smith R; Rahman T; Cramer SC; Bobrow JE; Reinkensmeyer DJ IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):378-89. PubMed ID: 17009498 [TBL] [Abstract][Full Text] [Related]
10. Kinematic data analysis for post-stroke patients following bilateral versus unilateral rehabilitation with an upper limb wearable robotic system. Kim H; Miller LM; Fedulow I; Simkins M; Abrams GM; Byl N; Rosen J IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):153-64. PubMed ID: 22855233 [TBL] [Abstract][Full Text] [Related]
11. Stochastic estimation of arm mechanical impedance during robotic stroke rehabilitation. Palazzolo JJ; Ferraro M; Krebs HI; Lynch D; Volpe BT; Hogan N IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):94-103. PubMed ID: 17436881 [TBL] [Abstract][Full Text] [Related]
12. Design and implementation of a training strategy in chronic stroke with an arm robotic exoskeleton. Frisoli A; Sotgiu E; Procopio C; Bergamasco M; Rossi B; Chisari C IEEE Int Conf Rehabil Robot; 2011; 2011():5975512. PubMed ID: 22275708 [TBL] [Abstract][Full Text] [Related]
13. An overview of robotic/mechanical devices for post-stroke thumb rehabilitation. Suarez-Escobar M; Rendon-Velez E Disabil Rehabil Assist Technol; 2018 Oct; 13(7):683-703. PubMed ID: 29334274 [TBL] [Abstract][Full Text] [Related]
14. Robotic techniques for upper limb evaluation and rehabilitation of stroke patients. Colombo R; Pisano F; Micera S; Mazzone A; Delconte C; Carrozza MC; Dario P; Minuco G IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):311-24. PubMed ID: 16200755 [TBL] [Abstract][Full Text] [Related]
15. VI.3. Rehabilitation robotics. Munih M; Bajd T Stud Health Technol Inform; 2010; 152():353-66. PubMed ID: 20407204 [TBL] [Abstract][Full Text] [Related]
16. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke. Babaiasl M; Mahdioun SH; Jaryani P; Yazdani M Disabil Rehabil Assist Technol; 2016; 11(4):263-80. PubMed ID: 25600057 [TBL] [Abstract][Full Text] [Related]
17. Acceptability of robotic technology in neuro-rehabilitation: preliminary results on chronic stroke patients. Mazzoleni S; Turchetti G; Palla I; Posteraro F; Dario P Comput Methods Programs Biomed; 2014 Sep; 116(2):116-22. PubMed ID: 24461799 [TBL] [Abstract][Full Text] [Related]
18. Control of a pneumatic orthosis for upper extremity stroke rehabilitation. Wolbrecht ET; Leavitt J; Reinkensmeyer DJ; Bobrow JE Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2687-93. PubMed ID: 17946132 [TBL] [Abstract][Full Text] [Related]
19. A robotic device as a sensitive quantitative tool to assess upper limb impairments in stroke patients: a preliminary prospective cohort study. Gilliaux M; Lejeune T; Detrembleur C; Sapin J; Dehez B; Stoquart G J Rehabil Med; 2012 Mar; 44(3):210-7. PubMed ID: 22367455 [TBL] [Abstract][Full Text] [Related]
20. Effector force requirements to enable robotic systems to provide assisted exercise in people with upper limb impairment after stroke. Jackson AE; Culmer PR; Levesley MC; Cozens JA; Makower SG; Bhakta BB IEEE Int Conf Rehabil Robot; 2011; 2011():5975391. PubMed ID: 22275595 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]