These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 22275593)
21. Three upper limb robotic devices for stroke rehabilitation: a review and clinical perspective. Bishop L; Stein J NeuroRehabilitation; 2013; 33(1):3-11. PubMed ID: 23949043 [TBL] [Abstract][Full Text] [Related]
22. A decision-theoretic approach in the design of an adaptive upper-limb stroke rehabilitation robot. Huq R; Kan P; Goetschalckx R; Hébert D; Hoey J; Mihailidis A IEEE Int Conf Rehabil Robot; 2011; 2011():5975418. PubMed ID: 22275621 [TBL] [Abstract][Full Text] [Related]
23. Preliminary results of BRAVO project: brain computer interfaces for Robotic enhanced Action in Visuo-motOr tasks. Bergamasco M; Frisoli A; Fontana M; Loconsole C; Leonardis D; Troncossi M; Foumashi MM; Parenti-Castelli V IEEE Int Conf Rehabil Robot; 2011; 2011():5975377. PubMed ID: 22275581 [TBL] [Abstract][Full Text] [Related]
24. A damper driven robotic end-point manipulator for functional rehabilitation exercises after stroke. Westerveld AJ; Aalderink BJ; Hagedoorn W; Buijze M; Schouten AC; Kooij Hv IEEE Trans Biomed Eng; 2014 Oct; 61(10):2646-54. PubMed ID: 24860023 [TBL] [Abstract][Full Text] [Related]
25. Online learning and adaptation of patient support during ADL training. Guidali M; Schlink P; Duschau-Wicke A; Riener R IEEE Int Conf Rehabil Robot; 2011; 2011():5975434. PubMed ID: 22275635 [TBL] [Abstract][Full Text] [Related]
26. Robotic-assisted rehabilitation of the upper limb after acute stroke. Masiero S; Celia A; Rosati G; Armani M Arch Phys Med Rehabil; 2007 Feb; 88(2):142-9. PubMed ID: 17270510 [TBL] [Abstract][Full Text] [Related]
27. Non-contact versus contact-based sensing methodologies for in-home upper arm robotic rehabilitation. Howard A; Brooks D; Brown E; Gebregiorgis A; Chen YP IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650487. PubMed ID: 24187304 [TBL] [Abstract][Full Text] [Related]
28. An assessment of robot-assisted bimanual movements on upper limb motor coordination following stroke. Lewis GN; Perreault EJ IEEE Trans Neural Syst Rehabil Eng; 2009 Dec; 17(6):595-604. PubMed ID: 19666342 [TBL] [Abstract][Full Text] [Related]
29. A novel robotic system for quantifying arm kinematics and kinetics: description and evaluation in therapist-assisted passive arm movements post-stroke. Culmer PR; Jackson AE; Makower SG; Cozens JA; Levesley MC; Mon-Williams M; Bhakta B J Neurosci Methods; 2011 Apr; 197(2):259-69. PubMed ID: 21414360 [TBL] [Abstract][Full Text] [Related]
30. Potential of a suite of robot/computer-assisted motivating systems for personalized, home-based, stroke rehabilitation. Johnson MJ; Feng X; Johnson LM; Winters JM J Neuroeng Rehabil; 2007 Mar; 4():6. PubMed ID: 17331243 [TBL] [Abstract][Full Text] [Related]
31. Robots testing robots: ALAN-Arm, a humanoid arm for the testing of robotic rehabilitation systems. Brookes J; Kuznecovs M; Kanakis M; Grigals A; Narvidas M; Gallagher J; Levesley M IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():676-681. PubMed ID: 28813898 [TBL] [Abstract][Full Text] [Related]
32. Training of reaching in stroke survivors with severe and chronic upper limb paresis using a novel nonrobotic device: a randomized clinical trial. Barker RN; Brauer SG; Carson RG Stroke; 2008 Jun; 39(6):1800-7. PubMed ID: 18403742 [TBL] [Abstract][Full Text] [Related]
33. Upper limb stroke rehabilitation: the effectiveness of Stimulation Assistance through Iterative Learning (SAIL). Meadmore KL; Cai Z; Tong D; Hughes AM; Freeman CT; Rogers E; Burridge JH IEEE Int Conf Rehabil Robot; 2011; 2011():5975502. PubMed ID: 22275698 [TBL] [Abstract][Full Text] [Related]
34. A computational model of human-robot load sharing during robot-assisted arm movement training after stroke. Reinkensmeyer DJ; Wolbrecht E; Bobrow J Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4019-23. PubMed ID: 18002881 [TBL] [Abstract][Full Text] [Related]
35. EMU: A transparent 3D robotic manipulandum for upper-limb rehabilitation. Fong J; Crocher V; Tan Y; Oetomo D; Mareels I IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():771-776. PubMed ID: 28813913 [TBL] [Abstract][Full Text] [Related]
36. An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation. Ho NS; Tong KY; Hu XL; Fung KL; Wei XJ; Rong W; Susanto EA IEEE Int Conf Rehabil Robot; 2011; 2011():5975340. PubMed ID: 22275545 [TBL] [Abstract][Full Text] [Related]
37. Towards brain-robot interfaces in stroke rehabilitation. Gomez-Rodriguez M; Grosse-Wentrup M; Hill J; Gharabaghi A; Scholkopf B; Peters J IEEE Int Conf Rehabil Robot; 2011; 2011():5975385. PubMed ID: 22275589 [TBL] [Abstract][Full Text] [Related]
38. Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis. Lum PS; Burgar CG; Shor PC IEEE Trans Neural Syst Rehabil Eng; 2004 Jun; 12(2):186-94. PubMed ID: 15218933 [TBL] [Abstract][Full Text] [Related]
39. Randomized trial of a robotic assistive device for the upper extremity during early inpatient stroke rehabilitation. Masiero S; Armani M; Ferlini G; Rosati G; Rossi A Neurorehabil Neural Repair; 2014 May; 28(4):377-86. PubMed ID: 24316679 [TBL] [Abstract][Full Text] [Related]
40. Robotic technologies and rehabilitation: new tools for stroke patients' therapy. Poli P; Morone G; Rosati G; Masiero S Biomed Res Int; 2013; 2013():153872. PubMed ID: 24350244 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]