BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 22275595)

  • 21. Mechanisms of motor recovery in chronic and subacute stroke patients following a robot-aided training.
    Mazzoleni S; Puzzolante L; Zollo L; Dario P; Posteraro F
    IEEE Trans Haptics; 2014; 7(2):175-80. PubMed ID: 24968381
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-powered robots to reduce motor slacking during upper-extremity rehabilitation: a proof of concept study.
    Washabaugh EP; Treadway E; Gillespie RB; Remy CD; Krishnan C
    Restor Neurol Neurosci; 2018; 36(6):693-708. PubMed ID: 30400120
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rehabilitation for hemiplegia using an upper limb training system based on a force direction.
    Ogata K; Hirabayashi Y; Kubota K; Hasegawa Y; Tsuji T
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():533-538. PubMed ID: 28813875
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A decision-theoretic approach in the design of an adaptive upper-limb stroke rehabilitation robot.
    Huq R; Kan P; Goetschalckx R; Hébert D; Hoey J; Mihailidis A
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975418. PubMed ID: 22275621
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Poststroke upper limb recovery.
    Tsu AP; Abrams GM; Byl NN
    Semin Neurol; 2014 Nov; 34(5):485-95. PubMed ID: 25520020
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Robot therapy of the upper limb in stroke patients: preliminary experiences for the principle-based use of this technology.
    Casadio M; Giannoni P; Masia L; Morasso P; Sandini G; Sanguineti V; Squeri V; Vergaro E
    Funct Neurol; 2009; 24(4):195-202. PubMed ID: 20412725
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of the iPAM MkII system and description of a randomized control trial with acute stroke patients.
    Jackson AE; Levesley MC; Makower SG; Cozens JA; Bhakta BB
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650407. PubMed ID: 24187226
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RUPERT closed loop control design.
    Balasubramanian S; Wei R; He J
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3467-70. PubMed ID: 19163455
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of robot-assisted upper limb rehabilitation on daily function and real-world arm activity in patients with chronic stroke: a randomized controlled trial.
    Liao WW; Wu CY; Hsieh YW; Lin KC; Chang WY
    Clin Rehabil; 2012 Feb; 26(2):111-20. PubMed ID: 21840917
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Including upper extremity robotic therapy during early inpatient stroke rehabilitation may not lead to better outcomes than conventional treatment.
    Pang MY
    J Physiother; 2014 Sep; 60(3):166. PubMed ID: 25084629
    [No Abstract]   [Full Text] [Related]  

  • 31. Robotic training and clinical assessment of upper extremity movements after spinal cord injury: a single case report.
    Yozbatiran N; Berliner J; O'Malley MK; Pehlivan AU; Kadivar Z; Boake C; Francisco GE
    J Rehabil Med; 2012 Feb; 44(2):186-8. PubMed ID: 22334347
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Commentary to: including upper extremity robotic therapy during early inpatient stroke rehabilitation may not lead to better outcomes than conventional treatment.
    Tong RK
    J Physiother; 2014 Sep; 60(3):166. PubMed ID: 25084630
    [No Abstract]   [Full Text] [Related]  

  • 33. The value of robotic systems in stroke rehabilitation.
    Masiero S; Poli P; Rosati G; Zanotto D; Iosa M; Paolucci S; Morone G
    Expert Rev Med Devices; 2014 Mar; 11(2):187-98. PubMed ID: 24479445
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Robotic arm skate for stroke rehabilitation.
    Wong CK; Jordan K; King M
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975389. PubMed ID: 22275593
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of robot-aided bilateral force-induced isokinetic arm training combined with conventional rehabilitation on arm motor function in patients with chronic stroke.
    Chang JJ; Tung WL; Wu WL; Huang MH; Su FC
    Arch Phys Med Rehabil; 2007 Oct; 88(10):1332-8. PubMed ID: 17908578
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Upper limb rehabilitation robotics after stroke: a perspective from the University of Padua, Italy.
    Masiero S; Carraro E; Ferraro C; Gallina P; Rossi A; Rosati G
    J Rehabil Med; 2009 Nov; 41(12):981-5. PubMed ID: 19841828
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Robotic and Sensor Technology for Upper Limb Rehabilitation.
    Jakob I; Kollreider A; Germanotta M; Benetti F; Cruciani A; Padua L; Aprile I
    PM R; 2018 Sep; 10(9 Suppl 2):S189-S197. PubMed ID: 30269805
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improving proprioceptive deficits after stroke through robot-assisted training of the upper limb: a pilot case report study.
    Colombo R; Sterpi I; Mazzone A; Delconte C; Pisano F
    Neurocase; 2016; 22(2):191-200. PubMed ID: 26565132
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A tailored exercise of manipulation of virtual tools to treat upper limb impairment in Multiple Sclerosis.
    Basteris A; De Luca A; Sanguineti V; Solaro C; Mueller M; Carpinella I; Cattaneo D; Bertoni R; Ferrarin M
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975509. PubMed ID: 22275705
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel robotic system for quantifying arm kinematics and kinetics: description and evaluation in therapist-assisted passive arm movements post-stroke.
    Culmer PR; Jackson AE; Makower SG; Cozens JA; Levesley MC; Mon-Williams M; Bhakta B
    J Neurosci Methods; 2011 Apr; 197(2):259-69. PubMed ID: 21414360
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.