These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 22275605)
1. An explorative study into changes in circle drawing after gravity compensation training in chronic stroke patients. Prange GB; Krabben T; Stienen AH; van der Kooij H; Rietman JS; Buurke JH IEEE Int Conf Rehabil Robot; 2011; 2011():5975402. PubMed ID: 22275605 [TBL] [Abstract][Full Text] [Related]
2. Preliminary results of training with gravity compensation of the arm in chronic stroke survivors. van der Kooij H; Prange GB; Krabben T; Renzenbrink GJ; de Boer J; Hermens HJ; Jannink MA Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2426-9. PubMed ID: 19965202 [TBL] [Abstract][Full Text] [Related]
3. Influence of gravity compensation training on synergistic movement patterns of the upper extremity after stroke, a pilot study. Krabben T; Prange GB; Molier BI; Stienen AH; Jannink MJ; Buurke JH; Rietman JS J Neuroeng Rehabil; 2012 Jul; 9():44. PubMed ID: 22824488 [TBL] [Abstract][Full Text] [Related]
4. Changes in muscle activation after reach training with gravity compensation in chronic stroke patients. Prange GB; Krabben T; Renzenbrink GJ; Ijzerman MJ; Hermens HJ; Jannink MJ Int J Rehabil Res; 2012 Sep; 35(3):234-42. PubMed ID: 22555316 [TBL] [Abstract][Full Text] [Related]
5. Influence of gravity compensation on muscle activation patterns during different temporal phases of arm movements of stroke patients. Prange GB; Jannink MJ; Stienen AH; van der Kooij H; Ijzerman MJ; Hermens HJ Neurorehabil Neural Repair; 2009 Jun; 23(5):478-85. PubMed ID: 19190089 [TBL] [Abstract][Full Text] [Related]
6. Objective measurement of synergistic movement patterns of the upper extremity following stroke: an explorative study. Krabben T; Prange GB; Molier BI; Rietman JS; Buurke JH IEEE Int Conf Rehabil Robot; 2011; 2011():5975430. PubMed ID: 22275631 [TBL] [Abstract][Full Text] [Related]
7. A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis. Housman SJ; Scott KM; Reinkensmeyer DJ Neurorehabil Neural Repair; 2009 Jun; 23(5):505-14. PubMed ID: 19237734 [TBL] [Abstract][Full Text] [Related]
8. Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment. Sanchez RJ; Liu J; Rao S; Shah P; Smith R; Rahman T; Cramer SC; Bobrow JE; Reinkensmeyer DJ IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):378-89. PubMed ID: 17009498 [TBL] [Abstract][Full Text] [Related]
9. Effects of arm training with the robotic device ARMin I in chronic stroke: three single cases. Nef T; Quinter G; Müller R; Riener R Neurodegener Dis; 2009; 6(5-6):240-51. PubMed ID: 19940461 [TBL] [Abstract][Full Text] [Related]
10. Gravity-supported exercise with computer gaming improves arm function in chronic stroke. Jordan K; Sampson M; King M Arch Phys Med Rehabil; 2014 Aug; 95(8):1484-9. PubMed ID: 24662811 [TBL] [Abstract][Full Text] [Related]
11. The responsiveness and correlation between Fugl-Meyer Assessment, Motor Status Scale, and the Action Research Arm Test in chronic stroke with upper-extremity rehabilitation robotic training. Wei XJ; Tong KY; Hu XL Int J Rehabil Res; 2011 Dec; 34(4):349-56. PubMed ID: 22044987 [TBL] [Abstract][Full Text] [Related]
12. Randomized trial of a robotic assistive device for the upper extremity during early inpatient stroke rehabilitation. Masiero S; Armani M; Ferlini G; Rosati G; Rossi A Neurorehabil Neural Repair; 2014 May; 28(4):377-86. PubMed ID: 24316679 [TBL] [Abstract][Full Text] [Related]
13. Robotic-assisted rehabilitation of the upper limb after acute stroke. Masiero S; Celia A; Rosati G; Armani M Arch Phys Med Rehabil; 2007 Feb; 88(2):142-9. PubMed ID: 17270510 [TBL] [Abstract][Full Text] [Related]
14. Robotic technologies and rehabilitation: new tools for upper-limb therapy and assessment in chronic stroke. Zollo L; Gallotta E; Guglielmelli E; Sterzi S Eur J Phys Rehabil Med; 2011 Jun; 47(2):223-36. PubMed ID: 21445028 [TBL] [Abstract][Full Text] [Related]
15. Effects of robotic-aided rehabilitation on recovery of upper extremity function in chronic stroke: a single case study. Flinn NA; Smith JL; Tripp CJ; White MW Occup Ther Int; 2009; 16(3-4):232-43. PubMed ID: 19593735 [TBL] [Abstract][Full Text] [Related]
16. Robotic therapy provides a stimulus for upper limb motor recovery after stroke that is complementary to and distinct from conventional therapy. Brokaw EB; Nichols D; Holley RJ; Lum PS Neurorehabil Neural Repair; 2014 May; 28(4):367-76. PubMed ID: 24297763 [TBL] [Abstract][Full Text] [Related]
17. Kinematic data analysis for post-stroke patients following bilateral versus unilateral rehabilitation with an upper limb wearable robotic system. Kim H; Miller LM; Fedulow I; Simkins M; Abrams GM; Byl N; Rosen J IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):153-64. PubMed ID: 22855233 [TBL] [Abstract][Full Text] [Related]
18. Feedforward model based arm weight compensation with the rehabilitation robot ARMin. Just F; Ozen O; Tortora S; Riener R; Rauter G IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():72-77. PubMed ID: 28813796 [TBL] [Abstract][Full Text] [Related]
19. Human arm weight compensation in rehabilitation robotics: efficacy of three distinct methods. Just F; Özen Ö; Tortora S; Klamroth-Marganska V; Riener R; Rauter G J Neuroeng Rehabil; 2020 Feb; 17(1):13. PubMed ID: 32024528 [TBL] [Abstract][Full Text] [Related]
20. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke. Rong W; Tong KY; Hu XL; Ho SK Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]