These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 22275613)

  • 1. Pediatric anklebot.
    Krebs HI; Rossi S; Kim SJ; Artemiadis PK; Williams D; Castelli E; Cappa P
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975410. PubMed ID: 22275613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robot-Aided Neurorehabilitation: A Pediatric Robot for Ankle Rehabilitation.
    Michmizos KP; Rossi S; Castelli E; Cappa P; Krebs HI
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):1056-67. PubMed ID: 25769168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined passive stretching and active movement rehabilitation of lower-limb impairments in children with cerebral palsy using a portable robot.
    Wu YN; Hwang M; Ren Y; Gaebler-Spira D; Zhang LQ
    Neurorehabil Neural Repair; 2011 May; 25(4):378-85. PubMed ID: 21343525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ankle control and strength training for children with cerebral palsy using the Rutgers Ankle CP: a case study.
    Cioi D; Kale A; Burdea G; Engsberg J; Janes W; Ross S
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975432. PubMed ID: 22275633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robotic training and kinematic analysis of arm and hand after incomplete spinal cord injury: a case study.
    Kadivar Z; Sullivan JL; Eng DP; Pehlivan AU; O'Malley MK; Yozbatiran N; Francisco GE
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975429. PubMed ID: 22275630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Preliminary study of robot-assisted ankle rehabilitation for children with cerebral palsy].
    Wang RL; Zhou ZH; Xi YC; Wang QN; Wang NH; Huang Z
    Beijing Da Xue Xue Bao Yi Xue Ban; 2018 Apr; 50(2):207-212. PubMed ID: 29643516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pediatric robotic rehabilitation: Current knowledge and future trends in treating children with sensorimotor impairments.
    Michmizos KP; Krebs HI
    NeuroRehabilitation; 2017; 41(1):69-76. PubMed ID: 28505989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of robotic therapy on upper-extremity function in children with cerebral palsy: A systematic review.
    Chen YP; Howard AM
    Dev Neurorehabil; 2016; 19(1):64-71. PubMed ID: 24724587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Content range and precision of a computer adaptive test of upper extremity function for children with cerebral palsy.
    Montpetit K; Haley S; Bilodeau N; Ni P; Tian F; Gorton G; Mulcahey MJ
    Phys Occup Ther Pediatr; 2011 Feb; 31(1):90-102. PubMed ID: 20942642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of motor adaptations to robotically facilitated upper extremity task practice demonstrated by children with cerebral palsy and adults with stroke.
    Qiu Q; Adamovich S; Saleh S; Lafond I; Merians AS; Fluet GG
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975431. PubMed ID: 22275632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficacy of constraint-induced movement therapy on involved upper-extremity use in children with hemiplegic cerebral palsy is not age-dependent.
    Gordon AM; Charles J; Wolf SL
    Pediatrics; 2006 Mar; 117(3):e363-73. PubMed ID: 16510616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upper extremity function and occupational performance in children with spastic cerebral palsy following lower extremity botulinum toxin injections.
    Keren-Capelovitch T; Jarus T; Fattal-Valevski A
    J Child Neurol; 2010 Jun; 25(6):694-700. PubMed ID: 20508235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of gestural feedback treatment for upper extremity movement in children with cerebral palsy.
    Wood KC; Lathan CE; Kaufman KR
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):300-5. PubMed ID: 23193461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Restoring ADL function after wrist surgery in children with cerebral palsy: a novel Bilateral robot system design.
    Holley D; Theriault A; Kamara S; Anewenter V; Hughes D; Johnson MJ
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650463. PubMed ID: 24187280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does microcurrent stimulation increase the range of movement of ankle dorsiflexion in children with cerebral palsy?
    Mäenpää H; Jaakkola R; Sandström M; Von Wendt L
    Disabil Rehabil; 2004 Jun; 26(11):669-77. PubMed ID: 15204506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multivariable static ankle mechanical impedance with relaxed muscles.
    Lee H; Ho P; Rastgaar MA; Krebs HI; Hogan N
    J Biomech; 2011 Jul; 44(10):1901-8. PubMed ID: 21571278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a robotic device for facilitating learning by children who have severe disabilities.
    Cook AM; Meng MQ; Gu JJ; Howery K
    IEEE Trans Neural Syst Rehabil Eng; 2002 Sep; 10(3):178-87. PubMed ID: 12503783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of random or sequential presentation of targets during robot-assisted therapy on children.
    Ladenheim B; Altenburger P; Cardinal R; Monterroso L; Dierks T; Mast J; Krebs HI
    NeuroRehabilitation; 2013; 33(1):25-31. PubMed ID: 23949025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of gait with solid and hinged ankle-foot orthoses in children with spastic diplegic cerebral palsy.
    Radtka SA; Skinner SR; Johanson ME
    Gait Posture; 2005 Apr; 21(3):303-10. PubMed ID: 15760746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An upper limb robot model of children limb for cerebral palsy neurorehabilitation.
    Pathak Y; Johnson M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1936-9. PubMed ID: 23366294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.